SERVICE MANUAL

CRAWLER EXCAVATOR R210LC-3

Use bookmarks for navigation inside manual

CRAWLER TYPE EXCAVATOR [R210LC-3]						
FOREWORD		Group 4	Max Flow Cut-Off Function			
SECTION 1		Group 5	Power Boost System			
GENERAL		Group 6	Swing Speed Control System			
Group 1	Safety Hints	Group 7	Travel Control System			
Group 2	Specifications	Group 8	Arm Half Flow System			
SECTION 2		Group 9	Automatic Warming Up Function			
STRUCTURE AND FUNCTION		Group 10	Engine Overheat Prevention Function			
Group 1	Pump Device	Group 11	Engine Control System			
Group 2	Main Control Valve	Group 12	EPPR(Electro Proportional Pressure Reducing)			
Group 3	Swing Device	SECTION 6	vaive			
Group 4	Travel Device					
Group 5	RCV Lever	Group 1	Hydraulic and Mechanical System			
Group 6	RCV Pedal	Group 2	Electrical System			
SECTION 3		Group 3	Mechatronics System			
HYDRAULIC SYSTEM		SECTION 7				
Group 1	Hydraulic Circuit	MAINTENANCE STANDARD				
Group 2	Main Circuit	Group 1	Operational Performance Test			
Group 3	Pilot Circuit	Group 2	Major Components			
Group 4	Single Operation	Group 3	Track and Work Equipment			
Group 5	Combined Operation	SECTION 8	SECTION 8			
SECTION 4		DISASSEMBLY AND ASSEMBLY				
ELECTRICA	AL SYSTEM	Group 1	Precaution			
Group 1	Component Location	Group 2	Tightening Torque			
Group 2	Electrical Circuit	Group 3	Pump Device			
Group 3	Monitoring System	Group 4	Main Control Valve			
Group 4	Electrical Component Specification	Group 5	Swing Device			
Group 5	Connectors	Group 6	Travel Device			
SECTION 5		Group 7	RCV Lever			
MECHATROMICS SYSTEM		Group 8	Turning Joint			
Group 1	Outline	Group 9	Boom, Arm and Bucket Cylinder			
Group 2	Mode selection System	Group 10	Undercarriage			
Group 3	Automatic Deceleration System	Group 11	Work Equipment			

3) RELIEF VALVE

- 1 Body
- 2 Seat
- 3 Plunger
- 4 Spring
- 5 Adjusting screw
- 6 Piston
- 7 Bushing
- 8 Spring seat
- 9 Shim
- 10 O-ring
- 11 Back up ring
- 12 O-ring

(1) Construction of relief valve

The valve casing contains two cartridge type relief valves that stop the regular and reverse rotations of the hydraulic motor. The relief valves relieve high pressure at start or at stop of swing motion and can control the relief pressure in two steps, high and low, in order to insure smooth operation.

(2) Function of relief valve

Figure illustrates how the pressure acting on the relief valve is related to its rising process. Here is given the function, referring to the figure following page.

1 Ports (P,R) at tank pressure.

② When hydraulic oil pressure(P×A1) reaches the preset force(FSP) of spring(4), the plunger(3) moves to the right as shown.

 $P1 \times A1=Fsp+Pg \times A2$

$$P1=\frac{Fsp+Pg \times A2}{A1}$$

③ The oil flow chamber g via orifice m and n. When the pressure of chamber g reaches the preset force(FSP) of spring(4), the piston(6) moves left and stop the piston(6) hits the bottom of bushing(7).

④ When piston(6) hits the bottom of bushing(7), it stops moving to the left any further. As the result, the pressure in chamber(g) equals(Ps).

4. COMBINED SWING & BUCKET OPERATION

When the swing and bucket functions are operated, simultaneously the swing spool and bucket spool in the main control valve are moved to the functional position by the pilot oil pressure from the remote control valve.

The oil from the rear pump flows into the swing motor through the swing spool in the left control valve.

The oil from the front pump flows into the bucket cylinder through the bucket spool in the right control valve.

5. COMBINED SWING, BOOM, ARM & BUCKET OPERATION

When the swing, boom, arm and bucket functions are operated, simultaneously each spool in the main control valve is moved to the functional position by the pilot oil pressure from the remote control valve.

The oil from the rear pump flows into the swing motor, boom cylinders and arm cylinder through the swing spool, boom 2 spool, arm 1 spool, and the parallel and confluence oil passage in the left control valve. The oil from the front pump flows into the boom cylinders, arm cylinder and bucket cylinder through the boom 1 spool, arm 2 spool, bucket spool and the parallel and confluence oil passage in the right control valve.

The superstructure swings and the boom, arm and bucket are operated.

7. WIPER MOTOR CIRCUIT

1) OPERATING FLOW

(1) Wiper motor switch ON

Fuse box (No.1) -- I/conn (CN-36(6))

► Wiper motor relay $(CR-4(2) \rightarrow (6))$ → Wiper switch $(CS-3(6) \rightarrow (2))$ → Ground

→ Wiper motor relay (CR-4(4) → (1))→ I/conn (CN-6(1)) → I/conn (CN-13(1))→ I/conn (CN-21(1)) → Wiper motor operating

(2) Auto - parking (When switch OFF)

```
Wiper motor (CN-21(1)) \longrightarrow OFF \longrightarrow Fuse box(No.1) \longrightarrow I/conn (CN-36(6)) \longrightarrow I/conn (CN-6(2)) \longrightarrow I/conn (CN-13(3)) \longrightarrow Wiper motor (CN-21(3) \rightarrow (4)) \longrightarrow Wiper motor stop
```

2) CHECK POINT

Engine	Key switch	Check point	Voltage
OFF	ON	 GND (Fuse box) GND (Switch input) GND (Relay) GND (Relay coil) GND (Relay input) GND (Relay) GND (Relay) GND (Relay) GND (Wiper power input) GND (Wiper power input) GND (Wiper motor) GND (Switch output) 	20 ~ 25V

* GND : Ground

WIPER MOTOR CIRCUIT

CONTROLLER CIRCUIT

