SERVICE MANUAL

CRAWLER EXCAVATOR R160LC-3

CONTENTS

CRAWLER TYPE EXCAVATOR [R160LC-3]

FOREWOR	D	Group 6	Automatic Warming Up Function	
SECTION 1		Group 7	Engine Overheat Prevention Function	
GENERAL		Group 8	Arm Half Flow System	
Group 1	Safety Uinta	Group 9	Anti-Restart System	
Group 1	Salety fills	Group 10	Self-Diagnostic System	
SECTION 2	opecifications	Group 11	Engine Control System	
STRUCTU	PE AND FUNCTION	Group 12	EPPR(Electro Proportional Pressure Reducing) Valve	
Group 1	Pump Derice	Group 13	Prolix Switch	
Group 2	Main Control Value	Group 14	Monitoring System	
Group 2	Suring Datrice	SECTION 6		
Group 4	Travel Device	TROUBLES	SHOOTING	
Group 5	PCVI ever	Group 1	Before Troubleshooting	
Group 6	BCV Pedal	Group 2	Hydraulic and Mechanical System	
SECTION 3	NO VI EMAI	Group 3	Electrical System	
HYDRALI	LIC SYSTEM	Group 4	Mechatronics System	
Group 1	Hydraulic Circuit	SECTION 7		
Group 2	Main Circuit	MAINTENANCE STANDARD		
Group 3	Pilot Circuit	Group 1	Operational Performance Test	
Group 4	Single Operation	Group 2	Major Components	
Group 5	Combined Operation	Group 3	Track and Work Equipment	
SECTION 4		SECTION 8	1.1	
ELECTRIC	CAL SYSTEM	DISASSEM	DISASSEMBLY AND ASSEMBLY	
Group 1	Component Location	Group 1	Precaution	
Group 2	Electrical Circuit	Group 2	Tightening Torque	
Group 3	Electrical Component Specification	Group 3	Pump Device	
Group 4	Connectors	Group 4	Main Control Valve	
SECTION 5		Group 5	Swing Device	
MECHATH	ROMICS SYSTEM	Group 6	Travel Device	
Group 1	Outline	Group 7	RCV Lever	
Group 2	Mode selection System	Group 8	Turning Joint	
Group 3 Automatic Deceleration System		Group 9	Boom. Arm and Bucket Cylinder	
Group 4	Power Boost System	Group 10	Undercarriage	
Group 5	Travel Speed Control System	Group 11	Work Equipment	

1. STRUCTURE

This service manual has been prepared as an aid to improve the quality of repairs by giving the serviceman an accurate understanding of the product and by showing him the correct way to perform repairs and make judgements. Make sure you understand the contents of this manual and use it to full effect at every opportunity.

This service manual mainly contains the necessary technical information for operations performed in a service workshop.

For ease of understanding, the manual is divided into the following sections.

SECTION 1 GENERAL

This section explains the safety hints and gives the specification of the machine and major components.

SECTION 2 STRUCTURE AND FUNCTION

This section explains the structure and function of each component. It serves not only to give an understanding of the structure, but also serves as reference material for troubleshooting.

SECTION 3 HYDRAULIC SYSTEM

This section explains the hydraulic circuit, single and combined operation.

SECTION 4 ELECTRICAL SYSTEM

This section explains the electrical circuit, monitoring system and each component. It serves not only to give an understanding electrical system, but also serves as reference material for trouble shooting.

SECTION 5 MECHATRONICS SYSTEM

This section explains the computer aided power optimization system and each component.

SECTION 6 TROUBLESHOOTING

This section explains the troubleshooting charts correlating problems to causes.

SECTION 7 MAINTENANCE STANDARD

This section gives the judgement standards when inspecting disassembled parts.

SECTION 8 DISASSEMBLY AND ASSEMBLY

This section explains the order to be followed when removing, installing, disassembling or assembling each component, as well as precautions to be taken for these operations.

The specifications contained in this shop manual are subject to change at any time and without any advance notice. Contact your HYUNDAI distributor for the latest information.

2. HOW TO READ THE SERVICE MANUAL

Distribution and updating

Any additions, amendments or other changes will be sent to HYUNDAI distributors.

Get the most up-to-date information before you start any work.

Filing method

1. See the page number on the bottom of the page.

File the pages in correct order.

2. Following examples shows how to read the page number.

Example 1

Item number(2. Structure and Function)

Consecutive page number for each item.

- 3. Additional pages : Additional pages are indicated by a hyphen(-) and number after the page number. File as in the example.
 - 10 4
 - 10 4 1 10 - 4 - 2 Added pages
 - 10 5

Revised edition mark(123...)

When a manual is revised, an edition mark is recorded on the bottom outside corner of the pages.

Revisions

Revised pages are shown at the **list of revised pages** on the between the contents page and section 1 page.

Symbols

So that the shop manual can be of ample practical use, important places for safety and quality are marked with the following symbols.

Symbol	Item	Remarks
	Safaty	Special safety precautions are necessary when performing the work.
	Jalety	Extra special safety precautions are necessary when performing the work because it is under internal pressure.
X Caution		Special technical precautions or other precautions for preserving standards are necessary when performing the work.

3) GEAR PUMP

ltem	Specification	
Туре	Fixed displacement gear pump single stage	
Capacity	10cc/rev	
Maximum pressure	40kgf/cm ² (570psi)	
Rated oil flow	22 / /min(5.8U.S. gpm/4.8U.K. gpm)	

4) MAIN CONTROL VALVE

Item	Specification
Туре	9 spools two-block
Operating method	Hydraulic pilot system
Main relief valve pressure	320kgf/cm ² (4550psi)[350kgf/cm ² (4980psi)]
Overload relief valve pressure	380kgf/cm²(5405psi)

[]: Power boost

5) SWING MOTOR

Item	Specification
Туре	Fixed displacement axial piston motor
Capacity	99.2cc/rev
Relief pressure	260kgf/cm ² (3911psi)
Braking system	Automatic, spring applied, hydraulic released
Braking torque	42kgf · m(304lbf · ft)
Brake release pressure	4.5~20kgf/cm²(64~284psi)
Reduction gear type	2 - stage planetary
Swing speed	12.1rpm

6) TRAVEL MOTOR

Item	Specification	
Туре	Variable displacement axial piston motor	
Relief pressure	350kgf/cm²(4980psi)	
Capacity(max / min)	87.3/55.5cc/rev	
Reduction gear type	3-stage planetary	
Braking system	Automatic, spring applied, hydraulic released	
Brake release pressure	11kgf/cm ² (156psi)	
Braking torque	1060~1780kgf · m(7667~12874lbf · ft)	

7) REMOTE CONTROL VALVE

ltem		Specification	
Туре		Pressure reducing type	
Operating prossure	Minimum	5.5kgf/cm²(78psi)	
Operating pressure	Maximum	19.5kgf/cm²(277psi)	
Single energies strake	Lever	82.7mm(3.3in)	
Single operation stroke	Pedal	123mm(4.8in)	

8) CYLINDER

Item		Specification
Room ovlindor	Bore dia \times Rod dia \times Stroke	ø 110× ø 80× 1180mm
Boom cylinder	Cushion	Extend only
Arm ovlinder	Bore dia \times Rod dia \times Stroke	ø 120 × ø 85 × 1320mm
Ann cylinder	Cushion	Extend and retract
Ducket evilader	Bore dia \times Rod dia \times Stroke	ø 105× ø 75× 1005mm
Bucket cyllfider	Cushion	Extend only

9) SHOE

ltem	Width	Ground pressure	Link quantity	Overall width
STD	600mm(24")	0.40kgf/cm ² (5.69psi)	49	2590mm(8' 6")
	500mm(20")	0.47kgf/cm ² (6.68psi)	49	2490mm(8' 2")
OPT	700mm(28")	0.35kgf/cm ² (4.98psi)	49	2690mm(8' 10")
	800mm(32")	0.31kgf/cm ² (4.41psi)	49	2790mm(9' 2")

10) BUCKET

ltom	Capacity		Tooth	Width	
liem	PCSA heaped	CECE heaped	quantity	Without side cutter	With side cutter
STD	0.65m ³ (0.85yd ³)	0.55m ³ (0.72yd ³)	5	930mm(37")	1050mm(41")
	0.39m ³ (0.51yd ³)	0.35m ³ (0.46yd ³)	3	620mm(24")	740mm(29")
ODT	0.57m ³ (0.75yd ³)	0.50m ³ (0.65yd ³)	4	840mm(33")	960mm(38")
UP1	0.70m ³ (0.92yd ³)	0.60m ³ (0.78yd ³)	5	990mm(39")	1110mm(44")
	0.80m ³ (1.05yd ³)	0.70m ³ (0.92yd ³)	5	1080mm(43")	1200mm(47")

(3) Power shift control

The set horsepower value is shifted by varying the command current level of the proportional pressure reducing value attached to the pump.

Only one proportional pressure reducing valve is provided.

However, the secondary pressure Pf (power shift pressure) is admitted to the horsepower control section of each pump regulator through the pump's internal path to shift it to the same set horsepower level.

This function permits arbitrary setting of the pump output power, thereby providing the optimum power level according to the operating condition.

The power shift pressure Pf controls the set horsepower of the pump to a desired level, as shown in the figure.

As the power shift pressure Pf rises, the compensating rod(623) moves to the right via the pin(898) and compensating piston(621).

This decreases the pump tilting angle and then the set horsepower in the same way as explained in the overload preventive function of the horsepower control. On the contrary, the set horsepower rises as the power shift pressure Pf falls.

(4) Adjustment of maximum and minimum flows

① Adjustment of maximum flow

Adjust it by loosening the hexagon nut(808) and by tightening(Or loosening) the set screw(954).

The maximum flow only is adjusted without changing other control characteristics.

Cread	Adjustment of max flow			
Speed	Tightening amount of adjusting screw (954)	Flow change amount		
(min ⁻¹)	(Turn)	(1 /min)		
2200	+1/4	-3.5		

2 Adjustment of minimum flow

Adjust it by loosening the hexagon nut (808) and by tightening(Or loosening) the hexagonal socket head set screw (953). Similarly to the adjustment of the maximum flow, other characteristics are not changed.

However, remember that, if tightened too much, the required horsepower during the maximum delivery pressure(Or during relieving) may increase.

Cread	Adjustment of min flow			
Speed	Tightening amount of adjusting screw (953)	Flow change amount		
(min -1)	(Turn)	(1 /min)		
2200	+1/4	-3.5		

GROUP 2 MAIN CONTROL VALVE

1. STRUCTURE(1/2)

7) CN TYPE CONNECTOR

6) SWING SPEED

(1) Measure the time required to swing three complete turns.

(2) Preparation

- ① Check the lubrication of the swing gear and swing bearing.
- ② Place the machine on flat, solid ground with ample space for swinging. Do not conduct this test on slopes.
- ③ With the arm rolled out and bucket rolled in, hold the bucket so that the height of the bucket pin is the same as the boom foot pin. The bucket must be empty.
- (4) Keep the hydraulic oil temperature at $50\pm5^{\circ}$ C.

(3) Measurement

- 3 Select the following switch positions.
- · Mode selector : Each mode
- ② Operate swing control lever fully.
- ③ Swing 1 turn and measure time taken to swing next 3 revolutions.
- ④ Repeat steps ② and ③ three time and calculate the average values.

(4) Evaluation

The time required for 3 swings should meet the following specifications.

Unit : Seconds / 3 revolutions

Model	Power selector switch	Standard	Maximum allowable
R160LC-3	H mode	15.0±1.5	17.5±1.5

7) SWING FUNCTION DRIFT CHECK

 Measure the swing drift on the bearing outer circumference when stopping after a 360° full speed swing.

(2) Preparation

- Check the lubrication of the swing gear and swing bearing.
- ② Place the machine on flat, solid ground with ample space for swinging. Do not conduct this test on slopes.
- ③ With the arm rolled out and bucket rolled in, hold the bucket so that the height of the bucket pin is the same as the boom foot pin. The bucket must be empty.
- ④ Make two chalk marks: one on the swing bearing and one directly below it on the track frame.
- (5) Swing the upperstructure 360°.
- (6) Keep the hydraulic oil temperature at $50\pm5^{\circ}$ C.

(3) Measurement

- ① Conduct this test in the H mode.
- O Select the following switch positions.
- Mode selector : H mode
- ③ Operate the swing control lever fully and return it to the neutral position when the mark on the upperstructure aligns with that on track frame after swinging 360°.
- ④ Measure the distance between the two marks.
- ⑤ Align the marks again, swing 360°, then test the opposite direction.
- 6 Repeat steps ③ and ⑤ three times each and calculate the average values.

(4) Evaluation

The measured drift angle should be within the following specifications.

P	

Unit : Degree

Model	Mode select switch	Standard	Maximum allowable	Remarks
R160LC-3	H mode	90 below	120	

8) SWING BEARING PLAY

 Measure the swing bearing play using a dial gauge to check the wear of bearing races and balls.

(2) Preparation

- ① Check swing bearing mounting cap screws for loosening.
- ② Check the lubrication of the swing bearing. Confirm that bearing rotation is smooth and without noise.
- ③ Install a dial gauge on the track frame as shown, using a magnetic base.
- ④ Position the upperstructure so that the boom aligns with the tracks facing towards the front idlers.
- ⑤ Position the dial gauge so that its needle point comes into contact with the bottom face of the bearing outer race.
- 6 Bucket should be empty.

(3) Measurement

- With the arm rolled out and bucket rolled in, hold the bottom face of the bucket to the same height of the boom foot pin. Record the dial gauge reading(h1).
- ② Lower the bucket to the ground and use it to raise the front idler 50cm.
 Record the dial gauge reading(h2).
- 3 Calculate bearing play(H) from this data(h1 and h2) as follows.

H = h2-h1

(4) Evaluation

The measured drift should be within the following specifications.

Unit : mm

Model	Standard	Maximum allowable	Remarks
R160LC-3	1.5 below	3.0	

3) DISASSEMBLY

Since the regulator consists of small precision finished parts, disassembly and assembly are rather complicated. For this reason, replacement of a regulator

assembly is recommended, unless there is a special reason, but in case disassembly is necessary for an unavoidable reason, read through this manual to the end before starting disassembly.

- (1) Choose a place for disassembly.
- * Choose a clean place.
- Spread rubber sheet, cloth, or so on on top of work-bench to prevent parts from being damaged.
- (2) Remove dust, rust, etc. from surfaces of regulator with clean oil.
- (3) Remove hexagon socket head screw (412, 413) and remove regulator main body from pump main body.
- * Take care not to lose O-ring.

- (4) Remove hexagon socket head screw (438) and remove cover(C,629)
- Cover(C) is fitted with adjusting screw (C,QI) (628, 925), adjusting ring(C, 627), lock nut(630), hexagon nut(801) and adjusting screw(924).
 Do not loosen these screws and nuts.
 If they are loosened, adjusted pressure-

flow setting will vary.

 (5) After removing cover(C, 629) subassembly, take out outer spring(625), inner spring (626) and spring seat(C, 624) from compensating section.

Then draw out adjusting ring(Q, 645), pilot spring(646) and spring seat(644) from pilot section.

- Adjusting ring(Q,645) can easily be drawn out with M4 bolt.
- (6) Remove hexagon socket head screws(436, 438) and remove pilot cover(641).After removing pilot cover, take out set spring(655) from pilot section.

- (7) Remove snap ring(814) and take out spring seat(653), return spring(654) and sleeve(651).
- * Sleeve(651) is fitted with snap ring(836).
- When removing snap ring(814), return spring(654) may pop out.
 Take care not to lose it.
- (8) Remove snap ring(858) and take out fulcrum plug(614) and adjusting plug (615).
- Fulcrum plug(614) and adjusting plug (615) can easily be taken out with M6 bolt.

