This Project Guide is intended to provide the information necessary for the layout of a marine propulsion plant.

The information is to be considered as preliminary. It is intended for the project stage only and subject to modification in the interest of technical progress. The Project Guide provides the general technical data available at the date of issue.

It should be noted that all figures, values, measurements or information about performance stated in this project guide are for guidance only and should not be used for detailed design purposes or as a substitute for specific drawings and instructions prepared for such purposes.

Data updates
Data not finally calculated at the time of issue is marked ‘Available on request’. Such data may be made available at a later date, however, for a specific project the data can be requested. Pages and table entries marked ‘Not applicable’ represent an option, function or selection which is not valid.

The latest, most current version of the individual Project Guide sections are available on the Internet at: www.mandiesel.com under ‘Marine’ → ‘Low Speed’.

Extent of Delivery
The final and binding design and outlines are to be supplied by our licensee, the engine maker, see Chapter 20 of this Project Guide.

In order to facilitate negotiations between the yard, the engine maker and the customer, a set of ‘Extent of Delivery’ forms is available in which the basic and the optional executions are specified.

Electronic versions
This Project Guide book and the ‘Extent of Delivery’ forms are available on a DVD and can also be found on the Internet at: www.mandiesel.com under ‘Marine’ → ‘Low Speed’, where they can be downloaded.

7th Edition
January 2009
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine Design</td>
<td>01</td>
</tr>
<tr>
<td>Engine Layout and Load Diagrams, SFOC</td>
<td>02</td>
</tr>
<tr>
<td>Turbocharger Choice & Exhaust Gas By-pass</td>
<td>03</td>
</tr>
<tr>
<td>Electricity Production</td>
<td>04</td>
</tr>
<tr>
<td>Installation Aspects</td>
<td>05</td>
</tr>
<tr>
<td>List of Capacities: Pumps, Coolers & Exhaust Gas</td>
<td>06</td>
</tr>
<tr>
<td>Fuel</td>
<td>07</td>
</tr>
<tr>
<td>Lubricating Oil</td>
<td>08</td>
</tr>
<tr>
<td>Cylinder Lubrication</td>
<td>09</td>
</tr>
<tr>
<td>Piston Rod Stuffing Box Drain Oil</td>
<td>10</td>
</tr>
<tr>
<td>Central Cooling Water System</td>
<td>11</td>
</tr>
<tr>
<td>Seawater Cooling</td>
<td>12</td>
</tr>
<tr>
<td>Starting and Control Air</td>
<td>13</td>
</tr>
<tr>
<td>Scavenge Air</td>
<td>14</td>
</tr>
<tr>
<td>Exhaust Gas</td>
<td>15</td>
</tr>
<tr>
<td>Engine Control System</td>
<td>16</td>
</tr>
<tr>
<td>Vibration Aspects</td>
<td>17</td>
</tr>
<tr>
<td>Monitoring Systems and Instrumentation</td>
<td>18</td>
</tr>
<tr>
<td>Dispatch Pattern, Testing, Spares and Tools</td>
<td>19</td>
</tr>
<tr>
<td>Project Support and Documentation</td>
<td>20</td>
</tr>
<tr>
<td>Appendix</td>
<td>A</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Engine Design</td>
<td></td>
</tr>
</tbody>
</table>
The MC/MC-C Engine | 1.01 1985628-9.0
Engine type designation | 1.02 1985521-0.0
Power, speed, SFOC | 1.03 1985549-8.0
Engine power range and fuel oil consumption | 1.04 1985556-9.0
Performance curves, fuel economy mode / low NOx emission mode | 1.05 1985584-4.0
MC Engine description | 1.06 1985795-3.1
Engine cross section | 1.07 1985620-4.0 |
| **2 Engine Layout and Load Diagrams, SFOC** |
Engine layout and load diagrams | 2.01 1983833-8.4
Propeller diameter and pitch, influence on optimum propeller speed | 2.02 1983878-2.5
Layout diagram, sizes | 2.03 1985309-1.0
Engine layout diagram and load diagrams | 2.04 1986033-8.1
Diagram for actual project | 2.05 1985473-0.1
Specific fuel oil consumption, ME versus MC engines | 2.06 1985310-1.0
SFOC for high efficiency/conventional turbochargers | 2.07 1986042-2.0
SFOC, reference conditions and guarantee | 2.08 1986045-8.0
SFOC calculations (64%-75%) | 2.09 1986133-3.0
SFOC calculations, example | 2.10 1986134-5.0
Fuel consumption at an arbitrary load | 2.11 1986631-7.0
Emission control | 2.12 1986636-6.0 |
| **3 Turbocharger Choice & Exhaust Gas By-pass** |
Turbocharger choice | 3.01 1985679-2.0
Exhaust gas by-pass | 3.02 1984593-4.4
NOx Reduction by SCR | 3.03 1985894-7.1 |
| **4 Electricity Production** |
Electricity production | 4.01 1985740-2.0
Designation of PTO | 4.01 1986634-2.0
PTO/RCF | 4.01 1984300-0.2
Space requirement for side mounted PTO/RCF | 4.02 1985855-3.0
Engine preparations | 4.03 1984315-6.2
PTO/BW GCR | 4.04 1984316-8.5
Waste Heat Recovery Systems (WHR) | 4.05 1986647-4.0
L16/24 Genset data | 4.06 1984205-4.4
L21/31 Genset data | 4.07 1984206-6.4
L23/30H Genset data | 4.08 1984207-8.4
L27/38 Genset data | 4.09 1984209-1.4
L28/32H Genset data | 4.10 1984210-1.4 |
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Installation Aspects</td>
</tr>
<tr>
<td></td>
<td>Space requirements and overhaul heights 5.01 1984375-4.4</td>
</tr>
<tr>
<td></td>
<td>Space requirement 5.02 1985783-3.0</td>
</tr>
<tr>
<td></td>
<td>Crane beam for overhaul of turbochargers 5.03 1985743-8.0</td>
</tr>
<tr>
<td></td>
<td>Crane beam for turbochargers 5.03 1984853-5.2</td>
</tr>
<tr>
<td></td>
<td>Engine room crane 5.04 1985757-1.0</td>
</tr>
<tr>
<td></td>
<td>Overhaul with Double Jib Crane 5.04 1984534-8.2</td>
</tr>
<tr>
<td></td>
<td>Double jib crane 5.04 1984541-9.1</td>
</tr>
<tr>
<td></td>
<td>Engine outline, galleries and pipe connections 5.05 1984715-8.3</td>
</tr>
<tr>
<td></td>
<td>Engine and gallery outline 5.06 1986251-8.0</td>
</tr>
<tr>
<td></td>
<td>Centre of gravity 5.07 1985705-6.0</td>
</tr>
<tr>
<td></td>
<td>Water and oil in engine 5.08 1985686-3.0</td>
</tr>
<tr>
<td></td>
<td>Engine pipe connections 5.09 1986254-3.0</td>
</tr>
<tr>
<td></td>
<td>Counterflanges 5.10 1986253-1.0</td>
</tr>
<tr>
<td></td>
<td>Counterflanges, Connection D 5.10 1986670-0.0</td>
</tr>
<tr>
<td></td>
<td>Engine seating and holding down bolts 5.11 1984176-5.5</td>
</tr>
<tr>
<td></td>
<td>Epoxy Chocks Arrangement 5.12 1985837-4.1</td>
</tr>
<tr>
<td></td>
<td>Engine seating profile 5.12 1985826-6.0</td>
</tr>
<tr>
<td></td>
<td>Engine top bracing 5.13 1984672-5.7</td>
</tr>
<tr>
<td></td>
<td>Mechanical top bracing 5.14 1986011-1.0</td>
</tr>
<tr>
<td></td>
<td>Hydraulic top bracing arrangement 5.15 1986029-2.0</td>
</tr>
<tr>
<td></td>
<td>Components for Engine Control System 5.16 1986030-2.0</td>
</tr>
<tr>
<td></td>
<td>Earthing device 5.17 1984929-2.3</td>
</tr>
<tr>
<td></td>
<td>MAN Diesel Controllable Pitch Propeller (CPP) 5.18 1984695-3.4</td>
</tr>
<tr>
<td>6</td>
<td>List of Capacities: Pumps, Coolers & Exhaust Gas</td>
</tr>
<tr>
<td></td>
<td>Calculation of capacities 6.01 1986166-8.0</td>
</tr>
<tr>
<td></td>
<td>List of capacities and cooling water systems 6.02 1985042-8.3</td>
</tr>
<tr>
<td></td>
<td>List of capacities, S50MC6 6.03 1986242-3.0</td>
</tr>
<tr>
<td></td>
<td>Auxiliary system capacities for derated engines 6.04 1986178-8.0</td>
</tr>
<tr>
<td></td>
<td>Pump capacities, pressures and flow velocities 6.04 1986194-3.0</td>
</tr>
<tr>
<td></td>
<td>Example 1, Pumps and Cooler Capacity 6.04 1986290-1.0</td>
</tr>
<tr>
<td></td>
<td>Freshwater generator 6.04 1986173-9.0</td>
</tr>
<tr>
<td></td>
<td>Jacket Cooling Water Temperature Control 6.04 1986375-3.0</td>
</tr>
<tr>
<td></td>
<td>Example 2, Fresh Water Production 6.04 1986291-3.0</td>
</tr>
<tr>
<td></td>
<td>Calculation of exhaust gas amount and temperature 6.04 1986176-4.0</td>
</tr>
<tr>
<td></td>
<td>Diagram for change of exhaust gas amount 6.04 1986371-6.0</td>
</tr>
<tr>
<td></td>
<td>Exhaust gas correction formula 6.04 1984320-3.3</td>
</tr>
<tr>
<td></td>
<td>Example 3, Expected Exhaust Gas 6.04 1986292-5.0</td>
</tr>
<tr>
<td>7</td>
<td>Fuel</td>
</tr>
<tr>
<td></td>
<td>Fuel oil system 7.01 1985639-7.1</td>
</tr>
<tr>
<td></td>
<td>Fuel considerations 7.01 1986778-0.0</td>
</tr>
<tr>
<td></td>
<td>Fuel oils 7.02 1983880-4.5</td>
</tr>
<tr>
<td></td>
<td>Fuel oil pipes and drain pipes 7.03 1985905-7.0</td>
</tr>
<tr>
<td></td>
<td>Fuel oil pipe insulation 7.04 1984051-8.3</td>
</tr>
<tr>
<td></td>
<td>Components for fuel oil system, venting box 7.05 1984735-6.1</td>
</tr>
<tr>
<td></td>
<td>Water in fuel emulsification 7.06 1983882-8.3</td>
</tr>
</tbody>
</table>
8 Lubricating Oil
- Lubricating and cooling oil system: 8.01 1985636-1.0
- Lubricating and cooling oil pipes: 8.01 1585908-2.0
- Hydraulic power supply unit: 8.02 1985637-3.0
- Lubricating oil pipes for turbochargers: 8.03 1984232-8.3
- Lubricating oil centrifuges and list of lubricating oils: 8.04 1983886-5.5
- Components for lube oil system: 8.05 1984242-4.4
- Lubricating oil tank: 8.06 1985918-9.0
- Crankcase venting and bedplate drain pipes: 8.07 1985960-6.0

9 Cylinder Lubrication
- Cylinder lubricating oil system: 9.01 1985631-2.0
- MAN B&W Alpha cylinder lubrication system: 9.02 1985632-4.0
- Mechanical Cylinder Lubricators: 9.03 1985968-0.0

10 Piston Rod Stuffing Box Drain Oil
- Stuffing box drain oil system: 10.01 1986053-0.0

11 Central Cooling Water System
- Central cooling water system: 11.01-02 1984696-5.3
- Components for central cooling water system: 11.03 1983987-2.3

12 Seawater Cooling
- Seawater Systems: 12.01 1983892-4.4
- Seawater cooling system: 12.02 1983893-6.4
- Seawater cooling pipes: 12.03 1983978-8.4
- Components for seawater cooling system: 12.04 1983981-1.3
- Jacket cooling water system: 12.05 1983894-8.5
- Jacket cooling water pipes: 12.06 1985985-8.0
- Components for jacket cooling water system: 12.07 1984056-7.3
- Deaerating tank: 12.07 1984065-1.2
- Temperature at start of engine: 12.08 1983986-0.2

13 Starting and Control Air
- Starting and control air system: 13.01 1986053-0.0
- Components for starting air system: 13.02 1986048-3.0
- Starting and control air pipes: 13.03 1986093-6.0
- Electric motor for turning gear: 13.04 1984139-5.2

14 Scavenge Air
- Scavenge air system: 14.01 1986148-9.0
- Auxiliary blowers: 14.02 1986586-2.1
- Operational panel for auxiliary blowers: 14.02 1986587-4.0
- Scavenge air pipes: 14.03 1986163-2.0
- Electric motor for auxiliary blower: 14.04 1986218-5.0
- Scavenge air cooler cleaning system: 14.05 1985182-9.1
- Scavenge air box drain system: 14.06 1984032-7.2
- Fire extinguishing system for scavenge air space: 14.07 1984044-7.4
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 Exhaust Gas</td>
<td>15.01 1986400-5.0</td>
</tr>
<tr>
<td>Exhaust gas system</td>
<td>15.01 1986400-5.0</td>
</tr>
<tr>
<td>Exhaust gas pipes</td>
<td>15.02 1984069-9.3</td>
</tr>
<tr>
<td>Cleaning systems, MAN Diesel</td>
<td>15.02 1984071-0.4</td>
</tr>
<tr>
<td>Cleaning systems, ABB and Mitsubishi</td>
<td>15.02 1984073-4.5</td>
</tr>
<tr>
<td>Exhaust gas system for main engine</td>
<td>15.03 1984074-6.3</td>
</tr>
<tr>
<td>Components of the exhaust gas system</td>
<td>15.04 1984075-8.6</td>
</tr>
<tr>
<td>Exhaust gas silencer</td>
<td>15.04 1986396-8.0</td>
</tr>
<tr>
<td>Calculation of exhaust gas back-pressure</td>
<td>15.05 1984094-9.3</td>
</tr>
<tr>
<td>Forces and moments at turbocharger</td>
<td>15.06 1986406-6.0</td>
</tr>
<tr>
<td>Diameter of exhaust gas pipe</td>
<td>15.07 1986503-6.0</td>
</tr>
<tr>
<td>16 Engine Control System</td>
<td>16.01 1985634-8.0</td>
</tr>
<tr>
<td>Engine control system MC/MC-C</td>
<td>16.01 1985634-8.0</td>
</tr>
<tr>
<td>Controllable Pitch Propeller</td>
<td>16.02 1986640-1.0</td>
</tr>
<tr>
<td>Engine Control System Interface to Surrounding Systems</td>
<td>16.03 1986641-3.0</td>
</tr>
<tr>
<td>17 Vibration Aspects</td>
<td>17.01 1984140-5.2</td>
</tr>
<tr>
<td>Vibration aspects</td>
<td>17.01 1984140-5.2</td>
</tr>
<tr>
<td>2nd order moments on 5 or 6 cylinder engines</td>
<td>17.02 1986644-9.0</td>
</tr>
<tr>
<td>Electric driven moment compensator</td>
<td>17.03 1984222-1.3</td>
</tr>
<tr>
<td>Power related unbalance (PRU)</td>
<td>17.04 1985847-0.0</td>
</tr>
<tr>
<td>Guide force moments</td>
<td>17.05 1984223-3.3</td>
</tr>
<tr>
<td>Guide force moments, data</td>
<td>17.05 1985904-5.0</td>
</tr>
<tr>
<td>Axial vibrations</td>
<td>17.06 1984225-7.4</td>
</tr>
<tr>
<td>Critical running</td>
<td>17.06 1984226-9.2</td>
</tr>
<tr>
<td>External forces and moments in layout points, S50MC6</td>
<td>17.07 1985955-9.0</td>
</tr>
<tr>
<td>18 Monitoring Systems and Instrumentation</td>
<td>18.01 1986233-9.0</td>
</tr>
<tr>
<td>Monitoring systems and instrumentation</td>
<td>18.01 1986233-9.0</td>
</tr>
<tr>
<td>PMI System</td>
<td>18.02 1986234-0.0</td>
</tr>
<tr>
<td>CoCoS-EDS</td>
<td>18.03 1986235-2.0</td>
</tr>
<tr>
<td>Alarm - Slow Down and Shut Down System</td>
<td>18.04 1986236-4.0</td>
</tr>
<tr>
<td>Local instruments</td>
<td>18.05 1986237-6.0</td>
</tr>
<tr>
<td>Other alarm functions</td>
<td>18.06 1986238-8.0</td>
</tr>
<tr>
<td>Identification of Instruments</td>
<td>18.07 1984586-1.4</td>
</tr>
<tr>
<td>19 Dispatch Pattern, Testing, Spares and Tools</td>
<td>19.01 1986642-5.0</td>
</tr>
<tr>
<td>Dispatch pattern, testing, spares and tools</td>
<td>19.01 1986642-5.0</td>
</tr>
<tr>
<td>Specification for painting of main engine</td>
<td>19.02 1984516-9.2</td>
</tr>
<tr>
<td>Dispatch Pattern</td>
<td>19.03 1986555-1.0</td>
</tr>
<tr>
<td>Dispatch pattern, list of masses and dimensions</td>
<td>19.04 1986576-6.0</td>
</tr>
<tr>
<td>Shop test</td>
<td>19.05 1984612-7.4</td>
</tr>
<tr>
<td>List of spare parts, unrestricted service</td>
<td>19.06 1985594-9.5</td>
</tr>
<tr>
<td>Additional spares</td>
<td>19.07 1984636-7.5</td>
</tr>
<tr>
<td>Wearing parts</td>
<td>19.08 1985185-4.1</td>
</tr>
<tr>
<td>Large spare parts, dimension and masses</td>
<td>19.09 1986623-4.0</td>
</tr>
<tr>
<td>List of standard tools for maintenance</td>
<td>19.10 1986451-8.0</td>
</tr>
<tr>
<td>Tool panels</td>
<td>19.11 1986645-0.0</td>
</tr>
<tr>
<td>Chapter</td>
<td>Section</td>
</tr>
<tr>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>20 Project Support and Documentation</td>
<td></td>
</tr>
<tr>
<td>Engine Selection Guide and Project Guide</td>
<td>20.01</td>
</tr>
<tr>
<td>Computerised engine application system</td>
<td>20.02</td>
</tr>
<tr>
<td>Extent of Delivery</td>
<td>20.03</td>
</tr>
<tr>
<td>Installation documentation</td>
<td>20.04</td>
</tr>
<tr>
<td>A Appendix</td>
<td></td>
</tr>
<tr>
<td>Symbols for piping</td>
<td>A</td>
</tr>
</tbody>
</table>
Section

2nd order moments on 5 or 6 cylinder engines 17.02 1986644-9.0

A
Additional spares 19.07 1984636-7.5
Alarm - Slow Down and Shut Down System 18.04 1986236-4.0
Auxiliary blowers 14.02 1986586-2.1
Auxiliary system capacities for derated engines 6.04 1986178-8.0
Axial vibrations 17.06 1984225-7.4

C
Calculation of capacities 6.01 1986166-8.0
Calculation of exhaust gas amount and temperature 6.04 1986176-4.0
Calculation of exhaust gas back-pressure 15.05 1984094-9.3
Central cooling water system 11.01-02 1984696-5.3
Centre of gravity 5.07 1985705-6.0
Cleaning systems, ABB and Mitsubishi 15.02 1984073-4.5
Cleaning systems, MAN Diesel 15.02 1984071-0.4
CoCoS-EDS 18.03 1986236-2.0
Components for central cooling water system 11.03 1983987-2.3
Components for Engine Control System 5.16 1986030-2.0
Components for fuel oil system, venting box 7.05 1984735-0.1
Components for jacket cooling water system 12.07 1984056-7.3
Components for lube oil system 8.05 1984242-4.4
Components for seawater cooling system 12.04 1983981-1.3
Components for starting air system 13.02 1986048-3.0
Components of the exhaust gas system 15.04 1984075-8.6
Computerised engine application system 20.02 1984590-9.2
Controllable Pitch Propeller 16.02 1986640-1.0
Counterflanges 5.10 1986253-1.0
Counterflanges, Connection D 5.10 1986670-0.0
Crane beam for overhaul of turbochargers 5.03 1985743-8.0
Crane beam for turbochargers 5.03 1984853-6.2
Crankcase venting and bedplate drain pipes 8.07 1985960-6.0
Critical running 17.06 1984226-9.2
Cylinder lubricating oil system 9.01 1985631-2.0

D
Deaerating tank 12.07 1984065-1.2
Designation of PTO 4.01 1986634-2.0
Diagram for actual project 2.05 1985473-0.1
Diagram for change of exhaust gas amount 6.04 1986371-6.0
Diameter of exhaust gas pipe 15.07 1986503-6.0
Dispatch Pattern 19.03 1986555-1.0
Dispatch pattern, list of masses and dimensions 19.04 1986576-6.0
Dispatch pattern, testing, spares and tools 19.01 1986642-5.0
Double jib crane 5.04 1984541-9.1
Index

Section

E	Earthing device	5.17	1984929-2.3
E	Electric driven moment compensator	17.03	1984222-1.3
E	Electric motor for auxiliary blower	14.04	1986218-5.0
E	Electric motor for turning gear	13.04	1984139-5.2
E	Electricity production	4.01	1985740-2.0
E	Emission control	2.12	1986636-6.0
E	Engine and gallery outline	5.06	1986251-8.0
E	Engine Control System Interface to Surrounding Systems	16.03	1986641-3.0
E	Engine control system MC/MC-C	16.01	1985634-8.0
E	Engine cross section	1.07	1985620-4.0
E	Engine layout and load diagrams	2.01	1983833-8.4
E	Engine layout diagram and load diagrams	2.04	1986033-8.1
E	Engine outline, galleries and pipe connections	5.05	1984715-8.3
E	Engine pipe connections	5.09	1986254-3.0
E	Engine power range and fuel oil consumption	1.04	1985556-9.0
E	Engine preparations	4.03	1984315-6.2
E	Engine room crane	5.04	1985757-1.0
E	Engine seating and holding down bolts	5.11	1984176-5.5
E	Engine seating profile	5.12	1985826-6.0
E	Engine Selection Guide and Project Guide	20.01	1984588-7.3
E	Engine top bracing	5.13	1984672-5.7
E	Engine type designation	1.02	1985521-0.0
E	Epoxy Chocks Arrangement	5.12	1985837-4.1
E	Example 1, Pumps and Cooler Capacity	6.04	1986290-1.0
E	Example 2, Fresh Water Production	6.04	1986291-3.0
E	Example 3, Expected Exhaust Gas	6.04	1984292-5.0
E	Exhaust gas by-pass	3.02	1984593-4.4
E	Exhaust gas correction formula	6.04	1984320-3.3
E	Exhaust gas pipes	15.02	1984069-9.3
E	Exhaust gas silencer	15.04	1986396-8.0
E	Exhaust gas system	15.01	1986400-5.0
E	Exhaust gas system for main engine	15.03	1984074-6.3
E	Extent of Delivery	20.03	1984591-0.2
E	External forces and moments in layout points, S50MC6	17.07	1985995-9.0

F

F	Fire extinguishing system for scavenge air space	14.07	1984044-7.4
F	Forces and moments at turbocharger	15.06	1986406-6.0
F	Freshwater generator	6.04	1986173-9.0
F	Fuel considerations	7.01	1986778-0.0
F	Fuel consumption at an arbitrary load	2.11	1986631-7.0
F	Fuel oil pipe insulation	7.04	1984051-8.3
F	Fuel oil pipes and drain pipes	7.03	1985905-7.0
F	Fuel oil system	7.01	1985639-7.1
F	Fuel oils	7.02	1983880-4.5

G

<p>| G | Guide force moments | 17.05 | 1984223-3.3 |
| G | Guide force moments, data | 17.05 | 1985904-5.0 |</p>
<table>
<thead>
<tr>
<th>Section</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Hydraulic power supply unit</td>
<td>8.02 1985637-3.0</td>
</tr>
<tr>
<td>Hydraulic top bracing arrangement</td>
<td>5.15 1986029-2.0</td>
</tr>
<tr>
<td>I</td>
<td></td>
</tr>
<tr>
<td>Identification of Instruments</td>
<td>18.07 1984585-1.4</td>
</tr>
<tr>
<td>Installation documentation</td>
<td>20.04 1984592-2.2</td>
</tr>
<tr>
<td>J</td>
<td></td>
</tr>
<tr>
<td>Jacket cooling water pipes</td>
<td>12.06 1985985-8.0</td>
</tr>
<tr>
<td>Jacket cooling water system</td>
<td>12.05 1983894-8.5</td>
</tr>
<tr>
<td>Jacket Cooling Water Temperature Control</td>
<td>6.04 1986375-3.0</td>
</tr>
<tr>
<td>L</td>
<td></td>
</tr>
<tr>
<td>L16/24 Genset data</td>
<td>4.06 1984205-4.4</td>
</tr>
<tr>
<td>L21/31 Genset data</td>
<td>4.07 1984206-6.4</td>
</tr>
<tr>
<td>L23/30H Genset data</td>
<td>4.08 1984207-8.4</td>
</tr>
<tr>
<td>L27/38 Genset data</td>
<td>4.09 1984209-1.4</td>
</tr>
<tr>
<td>L28/32H Genset data</td>
<td>4.10 1984210-1.4</td>
</tr>
<tr>
<td>Large spare parts, dimension and masses</td>
<td>19.09 1986623-4.0</td>
</tr>
<tr>
<td>Layout diagram, sizes</td>
<td>2.03 1985309-1.0</td>
</tr>
<tr>
<td>List of capacities and cooling water systems</td>
<td>6.02 1985042-8.3</td>
</tr>
<tr>
<td>List of capacities, S50MC6</td>
<td>6.03 1986242-3.0</td>
</tr>
<tr>
<td>List of spare parts, unrestricted service</td>
<td>19.06 1985594-9.5</td>
</tr>
<tr>
<td>List of standard tools for maintenance</td>
<td>19.10 1986451-9.0</td>
</tr>
<tr>
<td>Local instruments</td>
<td>18.05 1986237-6.0</td>
</tr>
<tr>
<td>Lubricating and cooling oil pipes</td>
<td>8.01 1585908-2.0</td>
</tr>
<tr>
<td>Lubricating and cooling oil system</td>
<td>8.01 1985636-1.0</td>
</tr>
<tr>
<td>Lubricating oil centrifuges and list of lubricating oils</td>
<td>8.04 1983886-5.5</td>
</tr>
<tr>
<td>Lubricating oil pipes for turbochargers</td>
<td>8.03 1984232-8.3</td>
</tr>
<tr>
<td>Lubricating oil tank</td>
<td>8.06 1985918-9.0</td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>MAN B&W Alpha cylinder lubrication system</td>
<td>9.02 1985632-4.0</td>
</tr>
<tr>
<td>MAN Diesel Controllable Pitch Propeller (CPP)</td>
<td>5.18 1985322-1.1</td>
</tr>
<tr>
<td>MC Engine description</td>
<td>1.06 1985795-3.1</td>
</tr>
<tr>
<td>Mechanical Cylinder Lubricators</td>
<td>9.03 1985968-0.0</td>
</tr>
<tr>
<td>Mechanical top bracing</td>
<td>5.14 1986011-1.0</td>
</tr>
<tr>
<td>Monitoring systems and instrumentation</td>
<td>18.01 1986233-9.0</td>
</tr>
<tr>
<td>N</td>
<td></td>
</tr>
<tr>
<td>NOx Reduction by SCR</td>
<td>3.03 1985894-7.1</td>
</tr>
<tr>
<td>O</td>
<td></td>
</tr>
<tr>
<td>Oil Supply System</td>
<td>9.03 1986598-2.0</td>
</tr>
<tr>
<td>Operational panel for auxiliary blowers</td>
<td>14.02 1986587-4.0</td>
</tr>
<tr>
<td>Other alarm functions</td>
<td>18.06 1986238-8.0</td>
</tr>
<tr>
<td>Overhaul with Double Jib Crane</td>
<td>5.04 1984534-8.2</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Performance curves, fuel economy mode / low NOx emission mode</td>
<td>1.05</td>
</tr>
<tr>
<td>PMI System</td>
<td>18.02</td>
</tr>
<tr>
<td>Power related unbalance (PRU)</td>
<td>17.04</td>
</tr>
<tr>
<td>Power, speed, SFOC</td>
<td>1.03</td>
</tr>
<tr>
<td>Propeller diameter and pitch, influence on optimum propeller speed</td>
<td>2.02</td>
</tr>
<tr>
<td>PTO/BW GCR</td>
<td>4.04</td>
</tr>
<tr>
<td>PTO/RCF</td>
<td>4.01</td>
</tr>
<tr>
<td>Pump capacities, pressures and flow velocities</td>
<td>6.04</td>
</tr>
<tr>
<td>Scavenge air box drain system</td>
<td>14.06</td>
</tr>
<tr>
<td>Scavenge air cooler cleaning system</td>
<td>14.05</td>
</tr>
<tr>
<td>Scavenge air pipes</td>
<td>14.03</td>
</tr>
<tr>
<td>Scavenge air system</td>
<td>14.01</td>
</tr>
<tr>
<td>Seawater cooling pipes</td>
<td>12.03</td>
</tr>
<tr>
<td>Seawater cooling system</td>
<td>12.02</td>
</tr>
<tr>
<td>Seawater Systems</td>
<td>12.01</td>
</tr>
<tr>
<td>SFOC calculations (64%–75%)</td>
<td>2.09</td>
</tr>
<tr>
<td>SFOC calculations, example</td>
<td>2.10</td>
</tr>
<tr>
<td>SFOC for high efficiency/conventional turbochargers</td>
<td>2.07</td>
</tr>
<tr>
<td>SFOC, reference conditions and guarantee</td>
<td>2.08</td>
</tr>
<tr>
<td>Shop test</td>
<td>19.05</td>
</tr>
<tr>
<td>Space requirement</td>
<td>5.02</td>
</tr>
<tr>
<td>Space requirement for side mounted PTO/RCF</td>
<td>4.02</td>
</tr>
<tr>
<td>Space requirements and overhaul heights</td>
<td>5.01</td>
</tr>
<tr>
<td>Specific fuel oil consumption, ME versus MC engines</td>
<td>2.06</td>
</tr>
<tr>
<td>Specification for painting of main engine</td>
<td>19.02</td>
</tr>
<tr>
<td>Starting and control air pipes</td>
<td>13.03</td>
</tr>
<tr>
<td>Starting and control air system</td>
<td>13.01</td>
</tr>
<tr>
<td>Stuffing box drain oil system</td>
<td>10.01</td>
</tr>
<tr>
<td>Symbols for piping</td>
<td>A 1983866-2.3</td>
</tr>
<tr>
<td>Temperature at start of engine</td>
<td>12.08</td>
</tr>
<tr>
<td>The MC/MC-C Engine</td>
<td>1.01</td>
</tr>
<tr>
<td>Tool panels</td>
<td>19.11</td>
</tr>
<tr>
<td>Turbocharger choice</td>
<td>3.01</td>
</tr>
<tr>
<td>Vibration aspects</td>
<td>17.01</td>
</tr>
<tr>
<td>Waste Heat Recovery Systems (WHR)</td>
<td>4.05</td>
</tr>
<tr>
<td>Water and oil in engine</td>
<td>5.08</td>
</tr>
<tr>
<td>Water in fuel emulsification</td>
<td>7.06</td>
</tr>
<tr>
<td>Wearing parts</td>
<td>19.08</td>
</tr>
</tbody>
</table>
Engine Design
The MC/MC-C Engine

Whether the freight rates rise or fall, an attractive payback time for newbuildings starts with low investment cost. Once in operation, the ease and flexibility in assigning engineers to operate the engine plant are together with low consumption rates of fuels, lubes, parts and service among the important functional issues which contribute to the cost benefit. The MAN B&W MC/MC-C engine meets both requirements.

The world market-leading two-stroke MC/MC-C engine programme from MAN Diesel has evolved since the early 1980s to embrace bore sizes from 260 mm to 980 mm for propelling ocean-going ships of all types and sizes. In fact, low-speed two-stroke main engines of the MC/MC-C type have become industry standard in a huge number of ship types. Also land-based applications (power plants mainly) have found the MC/MC-C engine types attractive.

The MC/MC-C engine features chain driven camshaft, camshaft controlled fuel injection timing and exhaust valve opening as well as a conventional fuel oil pumps, all well-known and proven technology familiar to marine engineers all over the world.

To conclude, the MAN B&W MC/MC-C engine combines classic virtues of commonly known, well-proven technology continuously upgraded and up-rated to suit the requirements to modern prime movers. Consequently, our latest cutting edge design and manufacturing features are built into each component.

Concept of the MC/MC-C engine

The engine concept is based on a mechanical camshaft system for activation of the fuel injection and the exhaust valves. The engine is provided with a pneumatic/electric manoeuvring system and the engine speed is controlled by an electronic/hydraulic type governor.

Each cylinder is equipped with its own fuel injection pump, which consists of a simple plunger activated by the fuel cam directly. Fuel economy at part load is optimized by means of the Variable Injection Timing (VIT) incorporated in the fuel pumps (optional on certain MC-C engines).

The cam controlled exhaust valve is opened hydraulically and closed by means of an air spring.

Lubrication is either by means of a uni-lube oil system serving both crankshaft, chain drive, piston cooling and camshaft or a combination of a main lubricating oil system and a separate camshaft lube oil system.

Cylinder lubrication is accomplished by electronically controlled Alpha lubricators, securing a low lube oil consumption, or timed mechanical lubricators alternatively.

The starting valves are opened pneumatically by control air from the starting air distributor(s) and closed by a spring.

The MC-C engine is the shorter, more compact version of the MC engine. It is well suited wherever a small engine room is requested, for instance in container vessels.

The main features of the MC engine are described in the following pages.

For further information about the application of MC/MC-C engines based on ship particulars and power demand, please refer to our publications titled:

Propulsion Trends in Container Vessels

Propulsion Trends in Bulk Carriers

Propulsion Trends in Tankers

The publications are available at: www.mandiesel.com under ‘Quicklinks’ → ‘Technical Papers’
Engine Type Designation

6 S 70 M C-C 7

Mark version

Design

Concept

Engine programme

Diameter of piston in cm

Stroke/bore ratio

Number of cylinders

Mark version

Design

Concept

Engine programme

Diameter of piston in cm

Stroke/bore ratio

Number of cylinders

C Compact engine

C Camshaft controlled

S Super long stroke

L Long stroke

K Short stroke
Power, Speed, Fuel and Lubricating Oil Consumption

MAN B&W S50MC6
- **Bore:** 500 mm
- **Stroke:** 1,910 mm

Power and speed

<table>
<thead>
<tr>
<th>Layout points</th>
<th>Engine speed r/min</th>
<th>Mean effective pressure bar</th>
<th>Power kW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Number of cylinders</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>L₁</td>
<td>127</td>
<td>18.0</td>
<td>7,150</td>
</tr>
<tr>
<td>L₂</td>
<td>127</td>
<td>11.5</td>
<td>4,550</td>
</tr>
<tr>
<td>L₃</td>
<td>95</td>
<td>18.0</td>
<td>5,350</td>
</tr>
<tr>
<td>L₄</td>
<td>95</td>
<td>11.5</td>
<td>3,400</td>
</tr>
</tbody>
</table>

Fuel and lubricating oil consumption

<table>
<thead>
<tr>
<th>At load Layout point</th>
<th>Specific fuel oil consumption g/kWh</th>
<th>Lubricating oil consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>With high efficiency turbocharger</td>
<td>With conventional turbocharger</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>80%</td>
</tr>
<tr>
<td>L₁</td>
<td>171</td>
<td>168</td>
</tr>
<tr>
<td>L₂</td>
<td>159</td>
<td>157</td>
</tr>
<tr>
<td>L₃</td>
<td>171</td>
<td>168</td>
</tr>
<tr>
<td>L₄</td>
<td>159</td>
<td>157</td>
</tr>
</tbody>
</table>

Fig. 1.03.01 Power, speed, fuel and lubricating oil consumption
Engine Power Range and Fuel Oil Consumption

Engine Power

The following tables contain data regarding the power, speed and specific fuel oil consumption of the engine.

Engine power is specified in kW for each cylinder number and layout points L₁, L₂, L₃ and L₄.

Discrepancies between kW and metric horsepower (1 BHP = 75 kpm/s = 0.7355 kW) are a consequence of the rounding off of the BHP values.

L₁ designates nominal maximum continuous rating (nominal MCR), at 100% engine power and 100% engine speed.

L₂, L₃ and L₄ designate layout points at the other three corners of the layout area, chosen for easy reference.

Specific fuel oil consumption (SFOC)

Specific fuel oil consumption values refer to brake power, and the following reference conditions:

ISO 3046/1-2002:
Blower inlet temperature 25°C
Blower inlet pressure 1000 mbar
Charge air coolant temperature 25°C
Fuel oil lower calorific value 42,700 kJ/kg (~10,200 kcal/kg)

Although the engine will develop the power specified up to tropical ambient conditions, specific fuel oil consumption varies with ambient conditions and fuel oil lower calorific value. For calculation of these changes, see Chapter 2.

SFOC guarantee

The figures given in this project guide represent the values obtained when the engine and turbocharger are matched with a view to obtaining the lowest possible SFOC values and fulfilling the IMO NOₓ emission limitations.

The Specific Fuel Oil Consumption (SFOC) is guaranteed for one engine load (power-speed combination), this being the one in which the engine is optimised.

The guarantee is given with a margin of 5%.

As SFOC and NOₓ are interrelated parameters, an engine offered without fulfilling the IMO NOₓ limitations is subject to a tolerance of only 3% of the SFOC.

Lubricating oil data

The cylinder oil consumption figures stated in the tables are valid under normal conditions.

During running-in periods and under special conditions, feed rates of up to 1.5 times the stated values should be used.

Fig. 1.04.01: Layout diagram for engine power and speed
Performance Curves

Fig. 1.05.01: Performance curves
MC Engine Description

Please note that engines built by our licensees are in accordance with MAN Diesel drawings and standards but, in certain cases, some local standards may be applied; however, all spare parts are interchangeable with MAN Diesel designed parts.

Some components may differ from MAN Diesel's design because of local production facilities or the application of local standard components.

In the following, reference is made to the item numbers specified in the 'Extent of Delivery' (EoD) forms, both for the 'Basic' delivery extent and for some 'Options'.

Bedplate and Main Bearing

The bedplate is made with the thrust bearing in the aft end of the engine. The bedplate consists of high, welded, longitudinal girders and welded cross girders with cast steel bearing supports.

For fitting to the engine seating in the ship, long, elastic holding-down bolts, and hydraulic tightening tools are used.

The bedplate is made without taper for engines mounted on epoxy chocks.

The oil pan, which is made of steel plate and is welded to the bedplate, collects the return oil from the forced lubricating and cooling oil system. The oil outlets from the oil pan are normally vertical and are provided with gratings.

Horizontal outlets at both ends can be arranged for some cylinder numbers, however, this must be confirmed by the engine builder.

The main bearings consist of thin walled steel shells lined with bearing metal. The main bearing bottom shell can be rotated out and in by means of special tools in combination with hydraulic tools for lifting the crankshaft. The shells are kept in position by a bearing cap.

Frame Box

The frame box is of triangular plate welded or rib design. On the exhaust side, it is provided with relief valves for each cylinder while, on the manoeuvring side, it is provided with a large hinged door for each cylinder. The crosshead guides are welded onto the frame box.

The frame box is bolted to the bedplate. The bedplate, frame box and cylinder frame are tightened together by stay bolts.

Cylinder Frame and Stuffing Box

The cylinder frame is either welded or cast and is provided with access covers for cleaning the scavenge air space, if required, and for inspection of scavenge ports and piston rings from the manoeuvring side. Together with the cylinder liner, it forms the scavenge air space.

The cylinder frame is fitted with pipes for the piston cooling oil inlet. The scavenge air receiver, turbocharger, air cooler box, lubricators and gallery brackets are located on the cylinder frame. At the bottom of the cylinder frame there is a piston rod stuffing box, provided with sealing rings for scavenge air. Oil scraper rings in the stuffing box prevent crankcase oil from coming up into the scavenge air space and polluting the crankcase oil with combustion waste products.

Drains from the scavenge air space and the piston rod stuffing box are located at the bottom of the cylinder frame.
Cylinder Liner

The cylinder liner is made of alloyed cast iron and is suspended in the cylinder frame with a low-situated flange. The top of the cylinder liner is fitted with a cooling jacket.

The cylinder liner has scavenge ports, drilled holes for cylinder lubrication and is prepared for installation of temperature sensors, if required.

Cylinder Cover

The cylinder cover is of forged steel, made in one piece, and has bores for cooling water. It has a central bore for the exhaust valve, and bores for the fuel valves, a starting valve and an indicator valve.

The cylinder cover is attached to the cylinder frame with studs and nuts tightened with hydraulic jacks.

Crankshaft

The crankshaft is mainly of the semi-built type, made from forged or cast steel throws while fully forged in the S35MC7, L35MC6 and S26MC6 engines. In engines with 9 cylinders or more the crankshaft is supplied in two parts.

At the aft end, the crankshaft is provided with the collar for the thrust bearing, and the flange for the turning wheel and for the coupling bolts to an intermediate shaft.

At the front end, the crankshaft is fitted with the collar for the axial vibration damper and a flange for the fitting of a tuning wheel. The flange can also be used for a Power Take Off, if so desired.

Coupling bolts and nuts for joining the crankshaft together with the intermediate shaft are not normally supplied.

Thrust Bearing

The propeller thrust is transferred through the thrust collar, the segments, and the bedplate, to the end chocks and engine seating, and thus to the ship’s hull.

The thrust bearing is located in the aft end of the engine. The thrust bearing is of the B&W-Michell type, and consists primarily of a thrust collar on the crankshaft, a bearing support, and segments of steel lined with white metal.

MAN Diesel’s flexible thrust cam design is used for the thrust collar on a range of engine types. The thrust shaft is an integrated part of the crankshaft and lubricated by the engine’s lubricating oil system.

Turning Gear and Turning Wheel

The turning wheel is fitted to the thrust shaft and driven by a pinion on the terminal shaft of the turning gear, which is mounted on the bedplate. The turning gear is driven by an electric motor with built-in gear with brake.

A blocking device prevents the main engine from starting when the turning gear is engaged. Engagement and disengagement of the turning gear is effected manually by an axial movement of the pinion.

The control device for the turning gear, consisting of starter and manual control box, can be ordered as an option.

Axial Vibration Damper

The engine is fitted with an axial vibration damper, mounted on the fore end of the crankshaft. The damper consists of a piston and a split-type housing located forward of the foremost main bearing.
The piston is made as an integrated collar on the main crank journal, and the housing is fixed to the main bearing support. For functional check of the vibration damper a mechanical guide is fitted, while an electronic vibration monitor can be supplied as an option.

Tuning Wheel/Torsional Vibration Damper

A tuning wheel or torsional vibration damper may have to be ordered separately, depending on the final torsional vibration calculations.

Connecting Rod

The connecting rod is made of forged steel and provided with bearing caps for the crosshead and crankpin bearings.

The crosshead and crankpin bearing caps are secured to the connecting rod with studs and nuts tightened by means of hydraulic jacks.

The crosshead bearing consists of a set of thin-walled steel shells, lined with bearing metal. The crosshead bearing cap is in one piece, with an angular cut-out for the piston rod.

The crankpin bearing is provided with thin-walled steel shells, lined with bearing metal. Lube oil is supplied through ducts in the crosshead and connecting rod.

Piston

The piston consists of a piston crown and piston skirt. The piston crown is made of heat-resistant steel. A piston cleaning ring located in the very top of the cylinder liner scrapes off excessive ash and carbon formations on the piston topland.

The piston has four ring grooves which are hard-chrome plated on both the upper and lower surfaces of the grooves. The uppermost piston ring is of the Controlled Pressure Relief type (CPR), whereas the other three piston rings all have an oblique cut. All four rings are alu-coated on the outer surface for running-in.

The piston skirt is made of cast iron with a bronze band.

Piston Rod

The piston rod is of forged steel and is surface-hardened on the running surface for the stuffing box. The piston rod is connected to the crosshead with four bolts. The piston rod has a central bore which, in conjunction with a cooling oil pipe, forms the inlet and outlet for cooling oil.

Crosshead

The crosshead is of forged steel and is provided with cast steel guide shoes of low-friction design with white metal on the running surface.

The telescopic pipe for oil inlet and the pipe for oil outlet are mounted on the guide shoes.

Scavenge Air System

The air intake to the turbocharger takes place directly from the engine room through the turbocharger intake silencer. From the turbocharger, the air is led via the charging air pipe, air cooler and scavenge air receiver to the scavenge ports of the cylinder liners, see Chapter 4.

Scavenge Air Cooler

For each turbocharger a scavenge air cooler of the mono-block type is fitted. The cooler is designed as a central cooling system cooled by freshwater of maximum 4.5 bar working pressure. Alternatively, a seawater cooling system with up to 2.0 - 2.5 bar working pressure can be chosen.

The scavenge air cooler is so designed that the difference between the scavenge air temperature and the water inlet temperature at specified MCR can be kept at about 12 °C.
Auxiliary Blower

The engine is provided with electrically-driven scavenge air blowers. The suction side of the blowers is connected to the scavenge air space after the air cooler.

Between the air cooler and the scavenge air receiver, non-return valves are fitted which automatically close when the auxiliary blowers supply the air.

The auxiliary blowers will start operating consecutively before the engine is started in order to ensure sufficient scavenge air pressure to obtain a safe start.

Further information is given in Chapter 14.

Exhaust Gas System

From the exhaust valves, exhaust gas is led to the exhaust gas receiver where the fluctuating pressure from the individual cylinders is equalised, and the total volume of gas is led further on to the turbocharger(s). After the turbocharger(s), the gas is led to the external exhaust pipe system.

Compensators are fitted between the exhaust valves and the receiver, and between the receiver and the turbocharger(s).

The exhaust gas receiver and exhaust pipes are provided with insulation, covered by galvanised steel plating.

A protective grating is installed between the exhaust gas receiver and the turbocharger.

Exhaust Turbocharger

The engines can be fitted with either MAN Diesel, ABB or Mitsubishi turbochargers.

The turbocharger choice is described in Chapter 3, and the exhaust gas system in Chapter 15.

Camshaft and Cams

The camshaft is made in one piece with exhaust cams, fuel cams, and indicator drive cams.

The exhaust cams and fuel cams are made of steel, with a hardened roller race, and are shrunk onto the shaft. They can be adjusted and dismantled hydraulically.

The cam for the indicator drive can be adjusted mechanically.

The camshaft bearings mainly consist of one lower half-shell fitted in a bearing support, except on S50MC which has an upper half shell, too. The camshaft is lubricated by the main lubricating oil system.

Chain Drive

The camshaft is driven from the crankshaft by a chain drive, which is kept running tight by a manually adjusted chain tightener. The long free lengths of chain are supported by rubber-clad guidebars and the chain is lubricated through oil spray pipes fitted at the chain wheels and guidebars.

Indicator Drive

As separate options, the engine can be supplied with either an indicator drive, a mechanical indicator system, or the so-called PMI system, a pressure analyser system, described in section 18.02.

The indicator drive consists of a cam fitted on the camshaft and a spring-loaded spindle with a roller which moves up and down in accordance with the movement of the piston within the engine cylinder. At the top, the spindle has an eye to which the indicator cord is fastened after the indicator has been installed on the indicator valve.
Governor

The engine is to be provided with a governor of a make approved by MAN Diesel, controlling the fuel pump through an actuator. The governor must meet the ISO 3046 standard, part IV, 1997.

The speed setting of the actuator is determined by an electronic signal from the electronic governor based on the position of the main engine regulating handle. The actuator is connected to the fuel regulating shaft by means of a mechanical linkage.

Alternatively for engines without PTO, a mechanical/hydraulic Woodward governor for pneumatic speed setting could be provided.

Fuel Oil Pump and Fuel Oil High Pressure Pipes

The engine is provided with one fuel pump for each cylinder. The fuel pump consists of a pump housing of nodular cast iron, a centrally placed pump barrel, and a plunger of nitrided steel. In order to prevent fuel oil from mixing with the lubricating oil, the pump actuator is provided with a sealing arrangement.

The pump is placed on the roller guide housing and activated by the fuel cam. The volume injected is controlled by turning the plunger by means of a toothed rack connected to the regulating shaft.

As an option on S50MC-C, the fuel pumps incorporate Variable Injection Timing (VIT) for optimised fuel economy at part load (not applicable on smaller types). The VIT uses the governor fuel setting as the controlling parameter.

The fuel oil pump is provided with a puncture valve, which prevents high pressure from building up during normal stopping and shut down.

As an option on engines type 50, the roller guide housing is provided with a semi-automatic lifting device which, during rotation of the engine, can lift the roller guide free of the cam. On engines type 46 and smaller, a separate tool is used to lift the roller guide.

The fuel oil high-pressure pipes are either double-walled or of the hose type.

Further information is given in Section 7.01.

Fuel Valves and Starting Air Valve

Each cylinder cover is equipped with two or three fuel valves, starting air valve (SAV), and indicator valve.

The opening of the fuel valves is controlled by the high fuel oil pressure created by the fuel oil pump, and the valves are closed by a spring. The fuel valves are cooled by the fuel.

An automatic vent slide allows circulation of fuel oil through the valve and high pressure pipes when the engine is stopped. The vent slide also prevents the compression chamber from being filled up with fuel oil in the event that the valve spindle sticks. Oil from the vent slide and other drains is led away in a closed system.

The starting air valve is opened by control air from the starting air distributor and is closed by a spring. The control air supply is regulated so that the starting valves deliver starting air to the cylinders in the correct firing order.

Starting Air System

The starting air system comprises a main starting valve, a starting air distributor and a non-return valve, a bursting disc for the branch pipe and a starting valve on each cylinder. The main starting valve is connected with the manoeuvring system, which controls the start of the engine.

A slow turning valve can be ordered as an option. The slow-turning function is actuated manually from the manoeuvring console.

The starting air system is described in detail in Section 13.01.
Exhaust Valve

The exhaust valve consists of the valve housing and the valve spindle. The valve housing is made of cast iron and is arranged for water cooling. The housing is provided with a water cooled bottom piece of steel with a flame-hardened seat of the W-seat design.

On S50MC, the exhaust valve spindle is either a DuraSpindle or made of Nimonic. On S50MC-C and MC/MC-C engines type 46 and smaller, DuraSpindle is the basic execution and a spindle made of Nimonic an option. The housing is provided with a spindle guide in any case.

The exhaust valve is tightened to the cylinder cover with studs and nuts. It is opened hydraulically and closed by means of air pressure. The hydraulic system consists of a piston actuator placed on the roller guide housing, a high-pressure pipe, and a working cylinder on the exhaust valve. The piston actuator is activated by a cam on the camshaft.

In operation, the valve spindle slowly rotates, driven by the exhaust gas acting on small vanes fixed to the spindle.

On engines type 50, sealing of the exhaust valve spindle guide is provided by means of Controlled Oil Level (COL), an oil bath in the bottom of the air cylinder, above the sealing ring. This oil bath lubricates the exhaust valve spindle guide and sealing ring as well.

On engines type 46 and smaller, sealing of the exhaust valve spindle guide is provided by means of sealing air.

Cylinder Lubrication

The cylinder lubrication system can be of either the electronic MAN B&W Alpha cylinder lubrication system or a mechanical type.

The cylinder lubrication systems are described in detail in Chapter 9.

Manoeuvring System

The engine is provided with a pneumatic/electric manoeuvring and fuel oil regulating system. The system transmits orders from the separate manoeuvring consoles to the engine.

The regulating system makes it possible to start, stop, reverse the engine and control the engine speed. The speed control on the manoeuvring console gives a speed-setting signal to the governor, dependent on the desired number of revolutions.

At shut-down, the fuel injection is stopped by the puncture valves in the fuel pumps being activated, independently of the speed control. At reversing, the displaceable rollers in the driving mechanism for the fuel pumps are moved to the ‘Astern’ position by an air cylinder controlled by the starting air distributor.

The engine is provided with an engine side mounted console and instrument panel.

Reversing

On reversible engines (with Fixed Pitch Propellers mainly), reversing of the engine is performed by means of an angular displaceable roller in the driving mechanism for the fuel pump of each engine cylinder. The reversing mechanism is activated and controlled by compressed air supplied to the engine.

The exhaust valve gear is not to be reversed.

Gallery Arrangement

The engine is provided with gallery brackets, stanchions, railings, platforms, and ladders between platforms. The brackets are placed at such a height as to provide the best possible overhauling and inspection conditions.

The engine is prepared for top bracings on the exhaust side, or on the manoeuvring side.
Piping Arrangements

The engine is delivered with piping arrangements for:

- Fuel oil
- Heating of fuel oil pipes
- Lubricating oil, piston cooling oil and camshaft lubrication
- Cylinder lubricating oil
- Cooling water to scavenge air cooler
- Jacket and turbocharger cooling water
- Cleaning of scavenge air cooler
- Cleaning of turbocharger
- Fire extinguishing in scavenge air space
- Starting air
- Control air
- Safety air
- Oil mist detector
- Exhaust valve sealing air (types 46 and smaller)
- Various drain pipes.

All piping arrangements are made of steel piping, except the control air, safety air and steam heating of fuel pipes, which are made of copper.

The pipes are provided with sockets for local instruments, alarm and safety equipment and, furthermore, with a number of sockets for supplementary signal equipment. Chapter 18 deals with the instrumentation.
Engine Cross Section of S50MC6

Fig.: 1.07.01: Engine cross section
Engine Layout and Load Diagrams, SFOC
Engine Layout and Load Diagrams

Introduction

The effective power ‘P’ of a diesel engine is proportional to the mean effective pressure p_e and engine speed ‘n’, i.e. when using ‘c’ as a constant:

$$ P = c \times p_e \times n $$

so, for constant mep, the power is proportional to the speed:

$$ P = c \times n' \quad \text{(for constant mep)} $$

When running with a Fixed Pitch Propeller (FPP), the power may be expressed according to the propeller law as:

$$ P = c \times n^3 \quad \text{(propeller law)} $$

Thus, for the above examples, the power P may be expressed as a power function of the speed ‘n’ to the power of ‘i’, i.e.:

$$ P = c \times n^i $$

Fig. 2.0.01 shows the relationship for the linear functions, $y = ax + b$, using linear scales.

The power functions $P = c \times n^i$ will be linear functions when using logarithmic scales:

$$ \log (P) = i \times \log (n) + \log (c) $$

Thus, propeller curves will be parallel to lines having the inclination $i = 3$, and lines with constant mep will be parallel to lines with the inclination $i = 1$.

Therefore, in the Layout Diagrams and Load Diagrams for diesel engines, logarithmic scales are used, giving simple diagrams with straight lines.

Propulsion and Engine Running Points

Propeller curve

The relation between power and propeller speed for a fixed pitch propeller is as mentioned above described by means of the propeller law, i.e. the third power curve:

$$ P = c \times n^3, \text{ in which:} $$

$P = \text{engine power for propulsion}$

$n = \text{propeller speed}$

$c = \text{constant}$

Propeller design point

Normally, estimates of the necessary propeller power and speed are based on theoretical calculations for loaded ship, and often experimental tank tests, both assuming optimum operating conditions, i.e. a clean hull and good weather. The combination of speed and power obtained may be called the ship's propeller design point (PD),
placed on the light running propeller curve 6. See below figure. On the other hand, some shipyards, and/or propeller manufacturers sometimes use a propeller design point (PD) that incorporates all or part of the so-called sea margin described below.

Engine layout (heavy propeller)

When determining the necessary engine layout speed that considers the influence of a heavy running propeller for operating at high extra ship resistance, it is (compared to line 6) recommended to choose a heavier propeller line 2. The propeller curve for clean hull and calm weather line 6 may then be said to represent a ‘light running’ (LR) propeller.

Compared to the heavy engine layout line 2, we recommend using a light running of 3.0-7.0% for design of the propeller.

Engine margin

Besides the sea margin, a so-called ‘engine margin’ of some 10% or 15% is frequently added. The corresponding point is called the ‘specified MCR for propulsion’ (MP), and refers to the fact that the power for point SP is 10% or 15% lower than for point MP.

Point MP is identical to the engine’s specified MCR point (M) unless a main engine driven shaft generator is installed. In such a case, the extra power demand of the shaft generator must also be considered.

Constant ship speed lines

The constant ship speed lines \(\propto \), are shown at the very top of the figure. They indicate the power required at various propeller speeds in order to keep the same ship speed. It is assumed that, for each ship speed, the optimum propeller diameter is used, taking into consideration the total propulsion efficiency. See definition of \(\propto \) in section 2.02.

Note:
Light/heavy running, fouling and sea margin are overlapping terms. Light/heavy running of the propeller refers to hull and propeller deterioration and heavy weather, whereas sea margin i.e. extra power to the propeller, refers to the influence of the wind and the sea. However, the degree of light running must be decided upon experience from the actual trade and hull design of the vessel.
Propeller diameter and pitch, influence on the optimum propeller speed

In general, the larger the propeller diameter D, the lower is the optimum propeller speed and the kW required for a certain design draught and ship speed, see curve D in the figure below.

The maximum possible propeller diameter depends on the given design draught of the ship, and the clearance needed between the propeller and the aft body hull and the keel.

The example shown in the figure is an 80,000 dwt crude oil tanker with a design draught of 12.2 m and a design speed of 14.5 knots.

When the optimum propeller diameter D is increased from 6.6 m to 7.2 m, the power demand is reduced from about 9,290 kW to 8,820 kW, and the optimum propeller speed is reduced from 120 r/min to 100 r/min, corresponding to the constant ship speed coefficient $\propto = 0.28$ (see definition of \propto in section 2.02, page 2).

Once an optimum propeller diameter of maximum 7.2 m has been chosen, the corresponding optimum pitch in this point is given for the design speed of 14.5 knots, i.e. $P/D = 0.70$.

However, if the optimum propeller speed of 100 r/min does not suit the preferred / selected main engine speed, a change of pitch away from optimum will only cause a relatively small extra power demand, keeping the same maximum propeller diameter:

- going from 100 to 110 r/min ($P/D = 0.62$) requires 8,900 kW i.e. an extra power demand of 80 kW.
- going from 100 to 91 r/min ($P/D = 0.81$) requires 8,900 kW i.e. an extra power demand of 80 kW.

In both cases the extra power demand is only of 0.9%, and the corresponding ‘equal speed curves’ are $\propto =+0.1$ and $\propto =-0.1$, respectively, so there is a certain interval of propeller speeds in which the ‘power penalty’ is very limited.

Fig. 2.02.01: Influence of diameter and pitch on propeller design
Constant ship speed lines

The constant ship speed lines \(\propto \), are shown at the very top of Fig. 2.02.02. These lines indicate the power required at various propeller speeds to keep the same ship speed provided that the optimum propeller diameter with an optimum pitch diameter ratio is used at any given speed, taking into consideration the total propulsion efficiency.

Normally, the following relation between necessary power and propeller speed can be assumed:

\[
P_2 = P_1 \times \left(\frac{n_2}{n_1} \right)^\propto
\]

where:
- \(P \) = Propulsion power
- \(n \) = Propeller speed, and
- \(\propto \) = the constant ship speed coefficient.

For any combination of power and speed, each point on lines parallel to the ship speed lines gives the same ship speed.

When such a constant ship speed line is drawn into the layout diagram through a specified propulsion MCR point ‘\(MP_1 \)’, selected in the layout area and parallel to one of the \(\propto \)-lines, another specified propulsion MCR point ‘\(MP_2 \)’ upon this line can be chosen to give the ship the same speed for the new combination of engine power and speed.

Fig. 2.02.02 shows an example of the required power speed point \(MP_1 \), through which a constant ship speed curve \(\propto = 0.25 \) is drawn, obtaining point \(MP_2 \) with a lower engine power and a lower engine speed but achieving the same ship speed.

Provided the optimum pitch/diameter ratio is used for a given propeller diameter the following data applies when changing the propeller diameter:

- for general cargo, bulk carriers and tankers \(\propto = 0.25 \) - 0.30
- and for reefers and container vessels \(\propto = 0.15 \) - 0.25

When changing the propeller speed by changing the pitch diameter ratio, the \(\propto \) constant will be different, see above.

Fig. 2.02.02: Layout diagram and constant ship speed lines
This section is not applicable
Engine Layout and Load Diagram

Engine Layout Diagram

An engine’s layout diagram is limited by two constant mean effective pressure (mep) lines \(L_1 - L_3 \) and \(L_2 - L_4 \), and by two constant engine speed lines \(L_1 - L_2 \) and \(L_3 - L_4 \). The \(L_1 \) point refers to the engine's nominal maximum continuous rating, see Fig. 2.01.03.

In the layout area, the engine's specified MCR point \(M \) can be set freely to suit the ship's demand for propeller power and speed.

On the horizontal axis and on the vertical axis the engine speed and the engine power are shown, respectively, on percentage scales. The scales are logarithmic which means that, in this diagram, power function curves like propeller curves (3rd power), constant mean effective pressure curves (1st power) and constant ship speed curves (0.15 to 0.30 power) are straight lines.

Specified maximum continuous rating (M)

Based on the propulsion and engine running points, as previously found, the layout diagram of a relevant main engine may be drawn-in. The specified MCR point \(M \) must be inside the limitation lines of the layout diagram; if it is not, the propeller speed will have to be changed or another main engine type must be chosen. Yet, in special cases point \(M \) may be located to the right of the line \(L_1-L_2 \), see 'Optimising Point' below.

Continuous service rating (S)

The continuous service rating is the power needed in service - including the specified sea margin and heavy/light running factor of the propeller - at which the engine is to operate at the required design ship speed, and point \(S \) is identical to the service propulsion point (SP) unless a main engine driven shaft generator is installed.

Optimising point (O)

The optimising point \(O \) is the rating at which the turbocharger is matched, and at which the engine timing and compression ratio are adjusted.

The optimising point \(O \) is placed on line 1 of the load diagram, see below, and the optimised power can be from 85% to 100% of point \(M \)’s power, when turbocharger(s) and engine timing are taken into consideration. When optimising between 85% and 100% of point \(M \)’s power, overload running will still be possible (110% of \(M \)).

The optimising point \(O \) is to be placed inside the layout diagram. In fact, the specified MCR point \(M \) can, in special cases, be placed outside the layout diagram, but only by exceeding line \(L_1-L_2 \), and of course, only provided that the optimising point \(O \) is located inside the layout diagram, and that the MCR power is not higher than the \(L_1 \) power.

Engine Load Diagram

Definitions

The engine’s load diagram defines the power and speed limits for continuous as well as overload operation of an installed engine having an optimising point \(O \) and a specified MCR point \(M \) that confirms the specification of the ship.

Point \(A \) is a 100% speed and power reference point of the load diagram, and is defined as the point on the propeller curve (line 1), through the optimising point \(O \), having the specified MCR power. Normally, point \(M \) is equal to point \(A \), but in special cases, for example if a shaft generator is installed, point \(M \) may be placed to the right of point \(A \) on line 7.

The service points of the installed engine incorporate the engine power required for ship propulsion and shaft generator, if installed.
Limits for continuous operation

The continuous service range is limited by four lines:

Line 3 and line 9:
Line 3 represents the maximum acceptable speed for continuous operation, i.e. 105% of A.

If, in special cases, A is located to the right of line $L_1 - L_2$, the maximum limit, however, is 105% of L_1.

During trial conditions, the maximum speed may be extended to 107% of A, see line 9.

The above limits may in general be extended to 105%, and during trial conditions to 107%, of the nominal L_1 speed of the engine, if permitted by the torsional vibration conditions.

The overspeed set-point is 109% of the speed in A, however, it may be moved to 109% of the nominal speed in L_1, if permitted by torsional vibration conditions.

Running above 100% of the nominal L_1 speed at a load lower than about 65% specified MCR should, however, be avoided for extended periods. Only plants with controllable pitch propellers can reach this light running area.

Line 4:
Represents the limit at which an ample air supply is available for combustion and imposes a limitation on the maximum combination of torque and speed.

Line 5:
 Represents the maximum mean effective pressure level (mep), which can be accepted for continuous operation.

Line 7:
Represents the maximum power for continuous operation.

Fig. 2.04.01: Standard engine load diagram

- **A**: 100% reference point
- **M**: Specified MCR point
- **O**: Optimising point
- **Line 1**: Propeller curve through optimising point ($i = 3$)
 (engine layout curve)
- **Line 2**: Propeller curve, fouled hull and heavy weather
 – heavy running ($i = 3$)
- **Line 3**: Speed limit
- **Line 4**: Torque/speed limit ($i = 2$)
- **Line 5**: Mean effective pressure limit ($i = 1$)
- **Line 6**: Propeller curve, clean hull and calm weather
 – light running ($i = 3$), for propeller layout
- **Line 7**: Power limit for continuous running ($i = 0$)
- **Line 8**: Overload limit
- **Line 9**: Speed limit at sea trial

Point M to be located on line 7 (normally in point A)

Limits for overload operation

The overload service range is limited as follows:

Line 8:
Represents the overload operation limitations.

The area between lines 4, 5, 7 and the heavy dashed line 8 is available for overload running for limited periods only (1 hour per 12 hours).
Recommendation

Continuous operation without limitations is allowed only within the area limited by lines 4, 5, 7 and 3 of the load diagram, except for CP propeller plants mentioned in the previous section.

The area between lines 4 and 1 is available for operation in shallow waters, heavy weather and during acceleration, i.e. for non-steady operation without any strict time limitation.

After some time in operation, the ship's hull and propeller will be fouled, resulting in heavier running of the propeller, i.e. the propeller curve will move to the left from line 6 towards line 2, and extra power is required for propulsion in order to keep the speed of the ship.

In calm weather conditions, the extent of heavy running of the propeller will indicate the need for cleaning the hull and possibly polishing the propeller.

Once the specified MCR (and the optimising point) have been chosen, the capacities of the auxiliary equipment will be adapted to the specified MCR, and the turbocharger etc. will be matched to the optimised power, however, considering the specified MCR.

If the specified MCR (and/or the optimising point) is to be increased later on, this may involve a change of the pump and cooler capacities, retiming the engine, change of the fuel valve nozzles, adjusting the cylinder liner cooling, as well as rematching the turbocharger or even a change to a larger size of turbocharger. In some cases, it can also require larger dimensions of the piping systems.

It is therefore of utmost importance to consider, already at the project stage, if the specification should be prepared for a later power increase. This is to be indicated in item 4 02 010 of the Extent of Delivery.
Extended load diagram for ships operating in extreme heavy running conditions

When a ship with fixed pitch propeller is operating in normal sea service, it will in general be operating in the hatched area around the design propeller curve 6, as shown on the standard load diagram in Fig. 2.04.01.

Sometimes, when operating in heavy weather, the fixed pitch propeller performance will be more heavy running, i.e. for equal power absorption of the propeller, the propeller speed will be lower and the propeller curve will move to the left.

As the low speed main engines are directly coupled to the propeller, the engine has to follow the propeller performance, i.e. also in heavy running propeller situations. For this type of operation, there is normally enough margin in the load area between line 6 and the normal torque/speed limitation line 4, see Fig. 2.04.01. To the left of line 4 in torque-rich operation, the engine will lack air from the turbocharger to the combustion process, i.e. the heat load limits may be exceeded and bearing loads might also become too high.

For some special ships and operating conditions, it would be an advantage - when occasionally needed - to be able to operate the propeller/main engine as much as possible to the left of line 6, but inside the torque/speed limit, line 4.

Such cases could be for:

- ships sailing in areas with very heavy weather
- ships operating in ice
- ships with two fixed pitch propellers/two main engines, where one propeller/one engine is declutched for one or the other reason.

The increase of the operating speed range between line 6 and line 4 of the standard load diagram, see Fig. 2.04.01, may be carried out as shown for the following engine Example with an extended load diagram for speed derated engine with increased light running:

- Extended load diagram for speed derated engines with increased light running.

The maximum speed limit (line 3) of the engines is 105% of the SMCR (Specified Maximum Continuous Rating) speed, as shown in Fig. 2.04.01. However, for speed and, thereby, power derated engines it is possible to extend the maximum speed limit to 105% of the engine's nominal MCR speed, line 3', but only provided that the torsional vibration conditions permit this. Thus, the shafting, with regard to torsional vibrations, has to be approved by the classification society in question, based on the extended maximum speed limit.

When choosing an increased light running to be used for the design of the propeller, the load diagram area may be extended from line 3 to line 3', as shown in Fig. 2.04.02, and the propeller/main engine operating curve 6 may have a correspondingly increased heavy running margin before exceeding the torque/speed limit, line 4.

A corresponding slight reduction of the propeller efficiency may be the result, due to the higher propeller design speed used.
Examples of the use of the Load Diagram

In the following some examples are illustrating the flexibility of the layout and load diagrams and the significant influence of the choice of the optimising point O.

The diagrams of the examples show engines with VIT fuel pumps, for which the optimising point O is normally different from the specified MCR point M as this can improve the SFOC at part load running.

- Example 1 shows how to place the load diagram for an engine without a shaft generator coupled to a fixed pitch propeller.

- Example 2 comprises diagrams for the same configuration, here with the optimising point on the left of the heavy running propeller curve (2), providing an extra engine margin for heavy running.

- Example 3 shows the same layout for an engine with fixed pitch propeller (Example 1), but with a shaft generator.

- Example 4 shows a special case with a shaft generator. In this case, the shaft generator is cut off, and the gensets used when the engine runs at specified MCR. This makes it possible to choose a smaller engine with a lower power output.

- Example 5 shows diagrams for an engine coupled to a controllable pitch propeller, with or without a shaft generator, (constant speed or combinator curve operation).

- Example 6 shows where to place the optimising point for an engine coupled to a controllable pitch propeller, and operating at constant speed.

For a specific project, the layout diagram for the actual projects shown later in this chapter may be used for drawing of the actual load diagram.
Example 1: Normal running conditions.
Engine coupled to a fixed pitch propeller (FPP) and without a shaft generator

Layout diagram

![Layout diagram]

Load diagram

![Load diagram]

- **M**: Specified MCR of engine
- **S**: Continuous service rating of engine
- **O**: Optimising point of engine
- **A**: Reference point of load diagram
- **MP**: Specified MCR for propulsion
- **SP**: Continuous service rating of propulsion

The optimising point O and its propeller curve 1 will normally be selected on the engine service curve 2.

Point A is then found at the intersection between propeller curve 1 (2) and the constant power curve through M, line 7. In this case, point A is equal to point M.

Once point A has been found in the layout diagram, the load diagram can be drawn, as shown in the above figure, and hence the actual load limitation lines of the diesel engine may be found by using the inclinations from the construction lines and the %-figures stated.

Fig. 2.04.03: Normal running conditions. Engine coupled to a fixed pitch propeller (FPP) and without a shaft generator
Example 2: Special running conditions.
Engine coupled to a fixed pitch propeller (FPP) and without a shaft generator

Layout diagram

Load diagram

M Specified MCR of engine
S Continuous service rating of engine
O Optimising point of engine
A Reference point of load diagram
MP Specified MCR for propulsion
SP Continuous service rating of propulsion

In this example, the optimising point O has been selected more to the left than in Example 1, providing an extra engine margin for heavy running operation in heavy weather conditions. In principle, the light running margin has been increased for this case.

Point A of the load diagram is found:
Line 1 Propeller curve through optimising point (O) placed to the left of line 2
Line 7 Constant power line through specified MCR (M)
Point A Intersection between line 1 and 7

Fig. 2.04.04: Special running conditions. Engine coupled to a fixed pitch propeller (FPP) and without a shaft generator
Example 3: Normal running conditions.
Engine coupled to a fixed pitch propeller (FPP) and with a shaft generator

Layout diagram

![Diagram showing engine and propeller speeds, with labels for M, S, O, A, MP, SP, and SG.]

Load diagram

![Diagram showing engine and propeller speeds, with labels for L1, L2, L3, L4, Engine service curve, Propulsion curve for fouled hull and heavy weather, and SG power.]

Point A of the load diagram is found:

- Line 1: Propeller curve through optimising point (O)
- Line 7: Constant power line through specified MCR (M)
- Point A: Intersection between line 1 and 7

In Example 3, a shaft generator (SG) is installed, and therefore the service power of the engine also has to incorporate the extra shaft power required for the shaft generator’s electrical power production.

In the figure, the engine service curve shown for heavy running incorporates this extra power.

The optimising point O will be chosen on the engine service curve as shown, but can, by an approximation, be located on curve 1, through point M.

Point A is then found in the same way as in Example 1, and the load diagram can be drawn as shown in the above figure.

Fig. 2.04.05: Normal running conditions. Engine coupled to a fixed pitch propeller (FPP) and with a shaft generator
Example 4: Special running conditions.
Engine coupled to a fixed pitch propeller (FPP) and with a shaft generator

Layout diagram

![Layout diagram](image)

Load diagram

![Load diagram](image)

- **M**: Specified MCR of engine
- **S**: Continuous service rating of engine
- **O**: Optimising point of engine
- **A**: Reference point of load diagram
- **MP**: Specified MCR for propulsion
- **SP**: Continuous service rating of propulsion
- **SG**: Shaft generator

Also in this special case, a shaft generator is installed, but compared to Example 3, this case has a specified MCR for propulsion, MP, placed at the top of the layout diagram.

This involves that the intended specified MCR of the engine M' will be placed outside the top of the layout diagram.

One solution could be to choose a larger diesel engine with an extra cylinder, but another and cheaper solution is to reduce the electrical power production of the shaft generator when running in the upper propulsion power range.

In choosing the latter solution, the required specified MCR power can be reduced from point M' to point M as shown. Therefore, when running in the upper propulsion power range, a diesel generator has to take over all or part of the electrical power production.

However, such a situation will seldom occur, as ships are rather infrequently running in the upper propulsion power range.

In the example, the optimising point O=S has been chosen equal to point S, and line 1 may be found.

Point A, having the highest possible power, is then found at the intersection of line L - L with line 1, and the corresponding load diagram is drawn. Point M is found on line 7 at MP's speed.

Fig. 2.04.06: Special running conditions. Engine coupled to a fixed pitch propeller (FPP) and with a shaft generator
Example 5: Engine coupled to a controllable pitch propeller (CPP) with or without a shaft generator

Layout diagram - with shaft generator
The hatched area shows the recommended speed range between 100% and 96.7% of the specified MCR speed for an engine with a shaft generator running at constant speed.

The service point S can be located at any point within the hatched area.

The procedure shown in examples 3 and 4 for engines with FPP can also be applied here for engines with CPP running with a combinator curve.

The optimising point O
O can be chosen on the propeller curve through point A = M with an optimised power from 85% to 100% of the specified MCR as mentioned before in the section dealing with the optimising point O.

Load diagram
Therefore, when the engine's specified MCR point (M) has been chosen, including engine margin, sea margin and the power for a shaft generator, if installed, point M can be used as point A of the load diagram, which can then be drawn.

The position of the combinator curve ensures the maximum load range within the permitted speed range for engine operation, and it still leaves a reasonable margin to the limit indicated by curves 4 and 5.

Example 6 will give a more detailed description of how to run at constant speed with a CP propeller.

Layout diagram - without a shaft generator
If a controllable pitch propeller (CPP) is applied, the combinator curve (of the propeller) will normally be selected for a loaded ship including sea margin.

For a given propeller speed the combinator curve may have a given propeller pitch, and this may be heavy running in heavy weather like for a fixed pitch propeller.

Therefore, it is recommended to use a light running combinator curve (the dotted curve which includes the sea power margin) as shown in the figure to obtain an increased operation margin of the diesel engine in heavy weather to the limit, indicated by lines 4 and 5.

Fig. 2.04.07: Engine with controllable pitch propeller (CPP), with or without a shaft generator

M Specified MCR of engine
S Continuous service rating of engine
O Optimising point of engine
A Reference point of load diagram

Load diagram
Therefore, when the engine's specified MCR point (M) has been chosen, including engine margin, sea margin and the power for a shaft generator, if installed, point M can be used as point A of the load diagram, which can then be drawn.

The position of the combinator curve ensures the maximum load range within the permitted speed range for engine operation, and it still leaves a reasonable margin to the limit indicated by curves 4 and 5.

Example 6 will give a more detailed description of how to run at constant speed with a CP propeller.
Example 6: Engines running at a constant speed with a controllable pitch propeller (CPP)

Fig. A: Constant speed curve through M, normal and correct location of the optimising point O

Irrespective of whether the engine is operating on a propeller curve or on a constant speed curve through M, the optimising point O must be located on the propeller curve through the specified MCR point M or, in special cases, to the left of point M.

The reason is that the propeller curve 1 through the optimising point O is the layout curve of the engine, and the intersection between curve 1 and the maximum power line 7 through point M is equal to 100% power and 100% speed, point A of the load diagram - in this case A=M.

In Fig. A, the optimising point O has been placed correctly, and the step-up gear and the shaft generator, if installed, may be synchronised on the constant speed curve through M.

Fig. B: Constant speed curve through M, wrong position of optimising point O

If the engine has been service-optimised at point O on a constant speed curve through point M, then the specified MCR point M would be placed outside the load diagram, and this is not permissible.

Fig. C: Recommended constant speed running curve, lower than speed M

In this case, it is assumed that a shaft generator, if installed, is synchronised at a lower constant main engine speed (for example with a speed equal to O or lower) at which improved CP propeller efficiency is obtained for part load running.

In this layout example, where an improved CP propeller efficiency is obtained during extended periods of part load running, the step-up gear and the shaft generator have to be designed for the lower constant engine speed that is applied.

Fig. C: Recommended procedure

Logarithmic scales

M: Specified MCR
O: Optimised point
A: 100% power and speed of load diagram (normally A=M)
Diagram for actual project

This figure contains a layout diagram that can be used for constructing the load diagram for an actual project, using the %-figures stated and the inclinations of the lines.

Fig. 2.05.01: Construction of layout diagram
Specific Fuel Oil Consumption, ME versus MC engines

This section is not applicable
SFOC for High Efficiency/Conventional Turbochargers

All engine types are as standard fitted with high efficiency turbochargers (EoD option: 459104) but can alternatively use conventional turbochargers, option: 459107.

The high efficiency turbocharger is applied to the engine in the basic design with the view to obtaining the lowest possible Specific Fuel Oil Consumption (SFOC) values, see curve A, Fig. 2.07.01.

With a conventional turbocharger the amount of air required for combustion purposes can, however, be adjusted to provide a higher exhaust gas temperature, if this is needed for the exhaust gas boiler.

The matching of the engine and the turbocharging system is then modified, thus increasing the exhaust gas temperature by 20 °C.

This modification will lead to a 7-8% reduction in the exhaust gas amount, and involve an SFOC penalty of 2 g/kWh, see curve B, Fig. 2.07.01.

![Graph showing SFOC for high efficiency and conventional turbochargers](image-url)

Fig. 2.07.01: Example of part load SFOC curves for high efficiency and conventional turbochargers
SFOC reference conditions and guarantee

SFOC at reference conditions

The SFOC is given in g/kWh based on the reference ambient conditions stated in ISO 3046:2002(E) and ISO 15550:2002(E):

- 1,000 mbar ambient air pressure
- 25 °C ambient air temperature
- 25 °C scavenge air coolant temperature,

and is related to a fuel oil with a lower calorific value of 42,700 kJ/kg (~10,200 kcal/kg).

Any discrepancies between g/kWh and g/BHP/hr is a result of the rounding of numbers for the latter.

For lower calorific values and for ambient conditions that are different from the ISO reference conditions, the SFOC will be adjusted according to the following table:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Condition</th>
<th>SFOC change</th>
<th>SFOC change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scav. air coolant temp.</td>
<td>per 10 °C rise</td>
<td>+0.60%</td>
<td>+0.41%</td>
</tr>
<tr>
<td>Blower inlet temp.</td>
<td>per 10 °C rise</td>
<td>+0.20%</td>
<td>+0.71%</td>
</tr>
<tr>
<td>Blower inlet pressure</td>
<td>per 10 mbar</td>
<td>-0.02%</td>
<td>-0.05%</td>
</tr>
<tr>
<td>Fuel oil lower calorific</td>
<td>rise 1%</td>
<td>-1.00%</td>
<td>-1.00%</td>
</tr>
</tbody>
</table>

With for instance a 1 °C increase in the scavenge air coolant temperature, a corresponding 1 °C increase in the scavenge air temperature will occur and involves an SFOC increase of 0.06% if \(p_{\text{max}} \) is adjusted to the same value.

SFOC guarantee

The SFOC guarantee refers to the above ISO reference conditions and lower calorific value. It is guaranteed for the power-speed combination in the optimising point (O) and the engine running ‘fuel economy mode’ in compliance with IMO NOx emission limitations.

The SFOC guarantee is given with a tolerance of 5%

Examples of graphic calculation of SFOC

The following diagrams b and c, valid for fixed pitch propeller and constant speed, respectively, show the reduction of SFOC in g/kWh, relative to the SFOC for the nominal MCR \(L_\text{n} \) rating.

The solid lines are valid at 100%, 80% and 50% of the optimising point (O).

Point O is drawn into the above-mentioned b or c diagram. A straight line along the constant mep curves (parallel to \(L_\text{n} - L_3 \)) is drawn through point O. The intersections of this line and the curves indicate the reduction in specific fuel oil consumption at 100%, 80% and 50% of the optimising point, related to the SFOC stated for the nominal MCR \(L_\text{n} \) rating.

An example of the calculated SFOC curves for an engine with fixed pitch propeller is shown in Diagram a, and is valid for two alternative engine optimising points:

- Optimising point \(O_1 \) at 100% of \(M \)
- Optimising point \(O_2 \) at 90% of \(M \)

See Fig. 2.10.01.

The optimising point typically chosen is 90%, randomly chosen between 85-100% in order to reduce SFOC at part load running.
SFOC Calculation for S50MC6

<table>
<thead>
<tr>
<th>Engine</th>
<th>kW</th>
<th>r/min</th>
<th>High efficiency TC</th>
<th>Conventional TC</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 S50MC6</td>
<td>7,150</td>
<td>127</td>
<td>171</td>
<td>173</td>
</tr>
<tr>
<td>6 S50MC6</td>
<td>8,580</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 S50MC6</td>
<td>10,010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 S50MC6</td>
<td>11,440</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data optimising point (O):

- Power: 100% of (O) kW
- Speed: 100% of (O) r/min
- SFOC found: g/kWh

Fig. 2.09.01
SFOC for S50MC6 with fixed pitch propeller

Diagram b

Fig. 2.09.02

SFOC for S50MC6 with constant speed

Diagram b

Fig. 2.09.03
SFOC calculations, example

<table>
<thead>
<tr>
<th>Data at nominal MCR (L1): 6S50MC6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power 100%</td>
</tr>
<tr>
<td>Speed 100%</td>
</tr>
<tr>
<td>Nominal SFOC:</td>
</tr>
<tr>
<td>• High efficiency turbocharger</td>
</tr>
<tr>
<td>• Conventional turbocharger</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Example of specified MCR = M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
</tr>
<tr>
<td>Speed</td>
</tr>
<tr>
<td>Turbocharger type</td>
</tr>
<tr>
<td>Optimising point (O)</td>
</tr>
<tr>
<td>Two alternatives</td>
</tr>
<tr>
<td>Power of O</td>
</tr>
<tr>
<td>Speed of O</td>
</tr>
<tr>
<td>SFOC found in O</td>
</tr>
</tbody>
</table>

Two alternative optimising points, O1 and O2 are used in the above example for the SFOC calculations:

\[O_1 = 100\% \text{ M} = 85.0\% \text{ L}_1 \text{ power and } 90.0\% \text{ L}_1 \text{ speed} \]
\[O_2 = 90\% \text{ M} = 76.5\% \text{ L}_1 \text{ power and } 86.9\% \text{ L}_1 \text{ speed} \]
The reductions, see diagram b, in g/kWh compared to SFOC in L:\n
<table>
<thead>
<tr>
<th>Power in</th>
<th>Part load points</th>
<th>SFOC g/kWh</th>
<th>SFOC g/kWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>100% O₁</td>
<td>1 100% M</td>
<td>-1.9</td>
<td>169.1</td>
</tr>
<tr>
<td>80% O₁</td>
<td>2 80% M</td>
<td>-4.7</td>
<td>166.3</td>
</tr>
<tr>
<td>50% O₁</td>
<td>3 50% M</td>
<td>-1.2</td>
<td>169.8</td>
</tr>
<tr>
<td>100% O₂</td>
<td>4 90% M</td>
<td>-4.0</td>
<td>167.0</td>
</tr>
<tr>
<td>80% O₂</td>
<td>5 72% M</td>
<td>-6.7</td>
<td>164.3</td>
</tr>
<tr>
<td>50% O₂</td>
<td>6 45% M</td>
<td>-2.7</td>
<td>168.3</td>
</tr>
</tbody>
</table>

Fig. 2.10.01: Example of SFOC for derated S50MC6 with fixed pitch propeller and high efficiency turbocharger
Fuel Consumption at an Arbitrary Load

Once the optimising point (O) of the engine has been chosen, the specific fuel oil consumption at an arbitrary point S_1, S_2, or S_3 can be estimated based on the SFOC at point ‘1’ and ‘2’.

These SFOC values can be calculated by using the graphs for the relevant engine type for the propeller curve I and for the constant speed curve II, giving the SFOC at points 1 and 2, respectively.

Next the SFOC for point S_i can be calculated as an interpolation between the SFOC in points ‘1’ and ‘2’, and for point S_3 as an extrapolation.

The SFOC curve through points $S_{2'}$, on the left of point 1, is symmetrical about point 1, i.e. at speeds lower than that of point 1, the SFOC will also increase.

The above-mentioned method provides only an approximate value. A more precise indication of the expected SFOC at any load can be calculated by using our computer program. This is a service which is available to our customers on request.

Fig. 2.11.01: SFOC at an arbitrary load
Emission Control

IMO NO\textsubscript{x} Emission Limits

All MC and MC-C engines are, as standard, delivered in compliance with the IMO speed dependent NO\textsubscript{x} limit, measured according to ISO 8178 Test Cycles E2/E3 for Heavy Duty Diesel Engines.

NO\textsubscript{x} Reduction Methods

The NO\textsubscript{x} content in the exhaust gas can be reduced with primary and/or secondary reduction methods.

The primary methods affect the combustion process directly by reducing the maximum combustion temperature, whereas the secondary methods are means of reducing the emission level without changing the engine performance, using external equipment.

0-30% NO\textsubscript{x} Reduction

The MC and MC-C engines are as standard delivered to comply with IMO NOx emission limitations, EoD 4 06 060. Engine test cycles E2 and E3 has to be ordered as an option, 4 06 060a and 060b, and various conditions can be specified, options 4 06 060f, 060g and 060h. Compliance with other emission limits can be specified as an option, 4 06 065.

Regardless of the emission limit specified, the engines are matched for best economy in service.

For further information on engine operation options, see Extent of Delivery.

30-50% NO\textsubscript{x} Reduction

Water emulsification of the heavy fuel oil is a well proven primary method. The type of homogenizer is either ultrasonic or mechanical, using water from the freshwater generator and the water mist catcher. The pressure of the homogenised fuel has to be increased to prevent the formation of steam and cavitation. It may be necessary to modify some of the engine components such as the fuel oil pressure booster, fuel injection valves and the engine control system.

Up to 95-98% NO\textsubscript{x} Reduction

When operating at full load, this reduction can be achieved by means of secondary methods, such as the SCR (Selective Catalytic Reduction), which involves an after-treatment of the exhaust gas, see Section 3.02. At lower load a 80-90% NO\textsubscript{x} reduction can be obtained, measured according to the ISO 8178 E2/E3 Test Cycles.

Plants designed according to this method have been in service since 1990 on five vessels, using Haldor Topsøe catalysts and ammonia as the reducing agent, urea can also be used.

The compact SCR unit can be located separately in the engine room or horizontally on top of the engine. The compact SCR reactor is mounted before the turbocharger(s) in order to have the optimum working temperature for the catalyst. However attention have to be given to the type of HFO to be used.

For further information about emission control, please refer to our publication:

Exhaust Gas Emission Control Today and Tomorrow

The publication is available at: www.mandiesel.com under ‘Quicklinks’ → ‘Technical Papers’.
Turbocharger Choice & Exhaust Gas By-pass
Turbocharger Choice

The MC/ME engines are designed for the application of either MAN Diesel, ABB or Mitsubishi (MHI) turbochargers.

The turbocharger choice is made with a view to obtaining the lowest possible Specific Fuel Oil Consumption (SFOC) values at the nominal MCR by applying high efficiency turbochargers.

The engines are, as standard, equipped with as few turbochargers as possible, see the table in Fig. 3.01.01.

One more turbocharger can be applied, than the number stated in the tables, if this is desirable due to space requirements, or for other reasons. Additional costs are to be expected.

The data specified in the printed edition are valid at the time of publishing.

However, for the latest up to date data, we recommend the 'Turbocharger selection' programme on the Internet, which can be used to identify a list of applicable turbochargers for a specific engine layout.

The programme will always be updated in connection with the latest information from the Turbocharger makers. This is available at: www.mandiesel.com, under 'Turbocharger' → 'Overview' → 'Turbocharger selection'.

For information about turbocharger arrangement and cleaning systems, see Section 5.01.

<table>
<thead>
<tr>
<th>Cyl.</th>
<th>MAN (TCA)</th>
<th>ABB (TPL)</th>
<th>MHI (MET)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1 x TCA55-20</td>
<td>1 x TPL73-B12</td>
<td>1 x MET53MA</td>
</tr>
<tr>
<td>6</td>
<td>1 x TCA66-20</td>
<td>1 x TPL77-B11</td>
<td>1 x MET60MA</td>
</tr>
<tr>
<td>7</td>
<td>1 x TCA66-20</td>
<td>1 x TPL77-B12</td>
<td>1 x MET60MA</td>
</tr>
<tr>
<td>8</td>
<td>1 x TCA77-20</td>
<td>1 x TPL77-B12/CL</td>
<td>1 x MET66MA</td>
</tr>
</tbody>
</table>

High efficiency turbochargers for the MAN B&W S50MC6 engine - L1 output

<table>
<thead>
<tr>
<th>Cyl.</th>
<th>MAN (TCA)</th>
<th>ABB (TPL)</th>
<th>MHI (MET)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1 x TCA55-20</td>
<td>1 x TPL73-B12</td>
<td>1 x MET53MA</td>
</tr>
<tr>
<td>6</td>
<td>1 x TCA66-20</td>
<td>1 x TPL73-B12/CS</td>
<td>1 x MET53MA</td>
</tr>
<tr>
<td>7</td>
<td>1 x TCA66-20</td>
<td>1 x TPL77-B12</td>
<td>1 x MET60MA</td>
</tr>
<tr>
<td>8</td>
<td>1 x TCA66-20</td>
<td>1 x TPL77-B12</td>
<td>1 x MET60MA</td>
</tr>
</tbody>
</table>

Conventional turbochargers for the MAN B&W S50MC6 engine - L1 output

Fig. 3.01.01: High / Conventional efficiency turbochargers
Exhaust Gas By-pass

Extreme Ambient Conditions

As mentioned in Chapter 1, the engine power figures are valid for tropical conditions at sea level: 45 °C air at 1000 mbar and 32 °C sea water, whereas the reference fuel consumption is given at ISO conditions: 25 °C air at 1000 mbar and 25 °C charge air coolant temperature.

Marine diesel engines are, however, exposed to greatly varying climatic temperatures winter and summer in arctic as well as tropical areas. These variations cause changes of the scavenge air pressure, the maximum combustion pressure, the exhaust gas amount and temperatures as well as the specific fuel oil consumption.

For further information about the possible countermeasures, please refer to our publication titled: Influence of Ambient Temperature Conditions

The publication is available at: www.mandiesel.com under ‘Quicklinks’ → ‘Technical Papers’

Arctic running condition

For air inlet temperatures below -10 °C the precautions to be taken depend very much on the operating profile of the vessel. The following alternative is one of the possible countermeasures. The selection of countermeasures, however, must be evaluated in each individual case.

Exhaust gas receiver with variable by-pass
option: 4 60 118

Compensation for low ambient temperature can be obtained by using exhaust gas by-pass system.

This arrangement ensures that only part of the exhaust gas goes via the turbine of the turbocharger, thus supplying less energy to the compressor which, in turn, reduces the air supply to the engine.

Please note that if an exhaust gas by-pass is applied the turbocharger size and specification has to be determined by other means than stated in this Chapter.

Emergency Running Condition

Exhaust gas receiver with total by-pass flange and blank counterflange
Option: 4 60 119

By-pass of the total amount of exhaust gas round the turbocharger is only used for emergency running in the event of turbocharger failure on engines, see Fig. 3.02.01.

This enables the engine to run at a higher load with only one turbocharger under emergency conditions. The engine’s exhaust gas receiver will in this case be fitted with a by-pass flange of approximately the same diameter as the inlet pipe to the turbocharger. The emergency pipe is yard’s delivery.
Fig. 3.02.01: Total by-pass of exhaust for emergency running
\textbf{NO\textsubscript{x} Reduction by SCR}

The NO\textsubscript{x} in the exhaust gas can be reduced with primary or secondary reduction methods. Primary methods affect the engine combustion process directly, whereas secondary methods reduce the emission level without changing the engine performance using equipment that does not form part of the engine itself.

For further information about emission control we refer to our publication:

\textit{Exhaust Gas Emission Control Today and Tomorrow}

The publication is available at www.mandiesel.com under ‘Quicklinks’ → ‘Technical Papers’

\textbf{Engine with Selective Catalytic Reduction System}

Option: 4 60 135

If a reduction between 50 and 98\% of NO\textsubscript{x} is required, the Selective Catalytic Reduction (SCR) system has to be applied by adding ammonia or urea to the exhaust gas before it enters a catalytic converter.

The exhaust gas must be mixed with ammonia before passing through the catalyst, and in order to encourage the chemical reaction the temperature level has to be between 300 and 400 °C. During this process the NO\textsubscript{x} is reduced to N\textsubscript{2} and water.

This means that the SCR unit has to be located before the turbocharger on two-stroke engines because of their high thermal efficiency and thereby a relatively low exhaust gas temperature.

The amount of ammonia injected into the exhaust gas is controlled by a process computer and is based on the NO\textsubscript{x} production at different loads measured during the testbed running. Fig. 3.03.01.

As the ammonia is a combustible gas, it is supplied through a double-walled pipe system, with appropriate venting and fitted with an ammonia leak detector (Fig. 3.03.01) which shows a simplified system layout of the SCR installation.
Fig. 3.03.01: Layout of SCR system
Electricity Production
Electricity Production

Introduction

Next to power for propulsion, electricity production is the largest fuel consumer on board. The electricity is produced by using one or more of the following types of machinery, either running alone or in parallel:

- Auxiliary diesel generating sets
- Main engine driven generators
- Steam driven turbogenerators
- Emergency diesel generating sets.

The machinery installed should be selected on the basis of an economic evaluation of first cost, operating costs, and the demand for man-hours for maintenance.

In the following, technical information is given regarding main engine driven generators (PTO) and the auxiliary diesel generating sets produced by MAN Diesel.

The possibility of using a turbogenerator driven by the steam produced by an exhaust gas boiler can be evaluated based on the exhaust gas data.

Power Take Off

With a generator coupled to a Power Take Off (PTO) from the main engine, electrical power can be produced based on the main engine's low SFOC and the use of heavy fuel oil. Several standardised PTO systems are available, see Fig. 4.0.01 and the designations in Fig. 4.0.02:

- PTO/RCF
 (Power Take Off/RENK Constant Frequency): Generator giving constant frequency, based on mechanical-hydraulical speed control.

- PTO/CFE
 (Power Take Off/Constant Frequency Electrical): Generator giving constant frequency, based on electrical frequency control.

- PTO/GCR
 (Power Take Off/Gear Constant Ratio): Generator coupled to a constant ratio step-up gear, used only for engines running at constant speed.

The DMG/CFE (Direct Mounted Generator/Constant Frequency Electrical) and the SMG/CFE (Shaft Mounted Generator/Constant Frequency Electrical) are special designs within the PTO/CFE group in which the generator is coupled directly to the main engine crankshaft and the intermediate shaft, respectively, without a gear. The electrical output of the generator is controlled by electrical frequency control.

Within each PTO system, several designs are available, depending on the positioning of the gear:

- BW I:
 Gear with a vertical generator mounted onto the fore end of the diesel engine, without any connections to the ship structure.

- BW II:
 A free-standing gear mounted on the tank top and connected to the fore end of the diesel engine, with a vertical or horizontal generator.

- BW III:
 A crankshaft gear mounted onto the fore end of the diesel engine, with a side-mounted generator without any connections to the ship structure.

- BW IV:
 A free-standing step-up gear connected to the intermediate shaft, with a horizontal generator.

The most popular of the gear based alternatives are the BW III/RCF types for plants with a fixed pitch propeller (FPP) and the BW IV/GCR for plants with a controllable pitch propeller (CPP). The BW III/RCF requires no separate seating in the ship and only little attention from the shipyard with respect to alignment.
Alternative types and layouts of shaft generators

<table>
<thead>
<tr>
<th>PTO/RCF</th>
<th>1a</th>
<th>1b</th>
<th>Design</th>
<th>Seating</th>
<th>Total efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>BW I/RCF</td>
<td>On engine (vertical generator)</td>
<td>88-91</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BW II/RCF</td>
<td>On tank top</td>
<td>88-91</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BW III/RCF</td>
<td>On engine</td>
<td>88-91</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BW IV/RCF</td>
<td>On tank top</td>
<td>88-91</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PTO/CFE</th>
<th>5a</th>
<th>5b</th>
<th>DMG/CFE</th>
<th>On engine</th>
<th>84-88</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6a</td>
<td>6b</td>
<td>SMG/CFE</td>
<td>On tank top</td>
<td>84-88</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PTO/GCR</th>
<th>7</th>
<th></th>
<th>BW I/GCR</th>
<th>On engine (vertical generator)</th>
<th>92</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8</td>
<td></td>
<td>BW II/GCR</td>
<td>On tank top</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td></td>
<td>BW III/GCR</td>
<td>On engine</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
<td>BW IV/GCR</td>
<td>On tank top</td>
<td>92</td>
</tr>
</tbody>
</table>

Fig. 4.01.01: Types of PTO
Designation of PTO

For further information, please refer to our publication titled:

Shaft Generators for MC and ME engines

The publication is available at: www.mandiesel.com under ‘Quicklinks’ → ‘Technical Papers’

Power take off:

BW III S60MC-C7/RCF 700-60

50: 50 Hz
60: 60 Hz

kW on generator terminals

RCF: Renk constant frequency unit
CFE: Electrically frequency controlled unit
GCR: Step-up gear with constant ratio

Mark version

Engine type on which it is applied

Layout of PTO: See Fig. 4.01.01

Make: MAN Diesel

Fig. 4.01.02: Example of designation of PTO
PTO/RCF

Side mounted generator, BWIII/RCF (Fig. 4.01.01, Alternative 3)

The PTO/RCF generator systems have been developed in close cooperation with the German gear manufacturer RENK. A complete package solution is offered, comprising a flexible coupling, a step-up gear, an epicyclic, variable-ratio gear with built-in clutch, hydraulic pump and motor, and a standard generator, see Fig. 4.01.03.

For marine engines with controllable pitch propellers running at constant engine speed, the hydraulic system can be dispensed with, i.e. a PTO/GCR design is normally used.

Fig. 4.01.03 shows the principles of the PTO/RCF arrangement. As can be seen, a step-up gear box (called crankshaft gear) with three gear wheels is bolted directly to the frame box of the main engine. The bearings of the three gear wheels are mounted in the gear box so that the weight of the wheels is not carried by the crankshaft. In the frame box, between the crankcase and the gear drive, space is available for tuning wheel, counterweights, axial vibration damper, etc.

The first gear wheel is connected to the crankshaft via a special flexible coupling made in one piece with a toothed coupling driving the crankshaft gear, thus isolating it against torsional and axial vibrations.

By means of a simple arrangement, the shaft in the crankshaft gear carrying the first gear wheel and the female part of the toothed coupling can be moved forward, thus disconnecting the two parts of the toothed coupling.

![Diagram of PTO/RCF system](image-link)

Fig. 4.01.03: Power take off with RENK constant frequency gear: BWIII/RCF, option: 4 85 253
The power from the crankshaft gear is transferred, via a multi-disc clutch, to an epicyclic variable-ratio gear and the generator. These are mounted on a common bedplate, bolted to brackets integrated with the engine bedplate.

The BWII/RCF unit is an epicyclic gear with a hydrostatic superposition drive. The hydrostatic input drives the annulus of the epicyclic gear in either direction of rotation, hence continuously varying the gearing ratio to keep the generator speed constant throughout an engine speed variation of 30%. In the standard layout, this is between 100% and 70% of the engine speed at specified MCR, but it can be placed in a lower range if required.

The input power to the gear is divided into two paths – one mechanical and the other hydrostatic – and the epicyclic differential combines the power of the two paths and transmits the combined power to the output shaft, connected to the generator. The gear is equipped with a hydrostatic motor driven by a pump, and controlled by an electronic control unit. This keeps the generator speed constant during single running as well as when running in parallel with other generators.

The multi-disc clutch, integrated into the gear input shaft, permits the engaging and disengaging of the epicyclic gear, and thus the generator, from the main engine during operation.

An electronic control system with a RENK controller ensures that the control signals to the main electrical switchboard are identical to those for the normal auxiliary generator sets. This applies to ships with automatic synchronising and load sharing, as well as to ships with manual switchboard operation.

Internal control circuits and interlocking functions between the epicyclic gear and the electronic control box provide automatic control of the functions necessary for the reliable operation and protection of the BWII/RCF unit. If any monitored value exceeds the normal operation limits, a warning or an alarm is given depending upon the origin, severity and the extent of deviation from the permissible values. The cause of a warning or an alarm is shown on a digital display.

Extent of delivery for BWII/RCF units

The delivery comprises a complete unit ready to be built-on to the main engine. Fig. 4.02.01 shows the required space and the standard electrical output range on the generator terminals.

Standard sizes of the crankshaft gears and the RCF units are designed for: 700, 1200, 1800 and 2600 kW, while the generator sizes of make A. van Kaick are:

<table>
<thead>
<tr>
<th>Type DSG</th>
<th>440 V</th>
<th>1800 r/min</th>
<th>380 V</th>
<th>1500 r/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>62 M2-4</td>
<td>707</td>
<td>566</td>
<td>627</td>
<td>501</td>
</tr>
<tr>
<td>62 L1-4</td>
<td>855</td>
<td>684</td>
<td>761</td>
<td>609</td>
</tr>
<tr>
<td>62 L2-4</td>
<td>1,056</td>
<td>845</td>
<td>940</td>
<td>752</td>
</tr>
<tr>
<td>74 M1-4</td>
<td>1,271</td>
<td>1,017</td>
<td>1,137</td>
<td>909</td>
</tr>
<tr>
<td>74 M2-4</td>
<td>1,432</td>
<td>1,146</td>
<td>1,280</td>
<td>1,024</td>
</tr>
<tr>
<td>74 L1-4</td>
<td>1,651</td>
<td>1,321</td>
<td>1,468</td>
<td>1,174</td>
</tr>
<tr>
<td>74 L2-4</td>
<td>1,924</td>
<td>1,539</td>
<td>1,709</td>
<td>1,368</td>
</tr>
<tr>
<td>86 K1-4</td>
<td>1,942</td>
<td>1,554</td>
<td>1,844</td>
<td>1,475</td>
</tr>
<tr>
<td>86 M1-4</td>
<td>2,345</td>
<td>1,876</td>
<td>2,148</td>
<td>1,718</td>
</tr>
<tr>
<td>86 L2-4</td>
<td>2,792</td>
<td>2,234</td>
<td>2,542</td>
<td>2,033</td>
</tr>
<tr>
<td>99 K1-4</td>
<td>3,222</td>
<td>2,578</td>
<td>2,989</td>
<td>2,391</td>
</tr>
</tbody>
</table>

In the event that a larger generator is required, please contact MAN Diesel.

If a main engine speed other than the nominal is required as a basis for the PTO operation, it must be taken into consideration when determining the ratio of the crankshaft gear. However, it has no influence on the space required for the gears and the generator.

The PTO can be operated as a motor (PTI) as well as a generator by making some minor modifications.
Yard deliveries are:

1. Cooling water pipes to the built-on lubricating oil cooling system, including the valves.
2. Electrical power supply to the lubricating oil stand-by pump built on to the RCF unit.
3. Wiring between the generator and the operator control panel in the switchboard.
4. An external permanent lubricating oil filling-up connection can be established in connection with the RCF unit. The system is shown in Fig. 4.03.03 ‘Lubricating oil system for RCF gear’. The dosage tank and the pertaining piping are to be delivered by the yard. The size of the dosage tank is stated in the table for RCF gear in ‘Necessary capacities for PTO/RCF’ (Fig. 4.03.02).

The necessary preparations to be made on the engine are specified in Figs. 4.03.01a and 4.03.01b.

Additional capacities required for BWIII/RCF

The capacities stated in the ‘List of capacities’ for the main engine in question are to be increased by the additional capacities for the crankshaft gear and the RCF gear stated in Fig. 4.03.02.
The stated kW at the generator terminals is available between 70% and 100% of the engine speed at specified MCR.

Space requirements have to be investigated case by case on plants with 2600 kW generator.

Dimension H: This is only valid for A. van Kaick generator type DSG, enclosure IP23, frequency = 60 Hz, speed = 1800 r/min.

Fig. 4.02.01: Space requirement for side mounted generator PTO/RCF type BWIII S50/RCF.

<table>
<thead>
<tr>
<th>kW generator</th>
<th>700 kW</th>
<th>1200 kW</th>
<th>1800 kW</th>
<th>2600 kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2,355</td>
<td>2,355</td>
<td>2,495</td>
<td>2,495</td>
</tr>
<tr>
<td>B</td>
<td>776</td>
<td>776</td>
<td>776</td>
<td>776</td>
</tr>
<tr>
<td>C</td>
<td>3,015</td>
<td>3,015</td>
<td>3,295</td>
<td>3,295</td>
</tr>
<tr>
<td>D</td>
<td>3,410</td>
<td>3,410</td>
<td>3,690</td>
<td>3,690</td>
</tr>
<tr>
<td>F</td>
<td>1,826</td>
<td>1,946</td>
<td>2,066</td>
<td>2,176</td>
</tr>
<tr>
<td>G</td>
<td>2,210</td>
<td>2,210</td>
<td>2,510</td>
<td>2,510</td>
</tr>
<tr>
<td>H</td>
<td>2,293</td>
<td>2,795</td>
<td>3,200</td>
<td>4,530</td>
</tr>
<tr>
<td>S</td>
<td>380</td>
<td>470</td>
<td>500</td>
<td>590</td>
</tr>
</tbody>
</table>

System mass (kg) with generator:

<table>
<thead>
<tr>
<th>kW generator</th>
<th>700 kW</th>
<th>1200 kW</th>
<th>1800 kW</th>
<th>2600 kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>System mass (kg) with generator:</td>
<td>22,750</td>
<td>26,500</td>
<td>37,100</td>
<td>48,550</td>
</tr>
</tbody>
</table>

System mass (kg) without generator:

<table>
<thead>
<tr>
<th>kW generator</th>
<th>700 kW</th>
<th>1200 kW</th>
<th>1800 kW</th>
<th>2600 kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>System mass (kg) without generator:</td>
<td>20,750</td>
<td>23,850</td>
<td>32,800</td>
<td>43,350</td>
</tr>
</tbody>
</table>
Engine preparations for PTO

Fig. 4.03.01a: Engine preparations for PTO
Pos.
1. Special face on bedplate and frame box
2. ribs and brackets for supporting the face and machined blocks for alignment of gear or stator housing
3. Machined washers placed on frame box part of face to ensure that it is flush with the face on the bedplate
4. Rubber gasket placed on frame box part of face
5. Shim placed on frame box part of face to ensure that it is flush with the face of the bedplate
6. Distance tubes and long bolts
7. Threaded hole size, number and size of spring pins and bolts to be made in agreement with PTO maker
8. Flange of crankshaft, normally the standard execution can be used
9. Studs and nuts for crankshaft flange
10. Free flange end at lubricating oil inlet pipe (incl. blank flange)
11. Oil outlet flange welded to bedplate (incl. blank flange)
12. Face for brackets
13. Brackets
14. Studs for mounting the brackets
15. Studs, nuts and shims for mounting of RCF/-generator unit on the brackets
16. Shims, studs and nuts for connection between crankshaft gear and RCF/-generator unit
17. Engine cover with connecting bolts to bedplate/frame box to be used for shop test without PTO
18. Intermediate shaft between crankshaft and PTO
19. Oil sealing for intermediate shaft
20. Engine cover with hole for intermediate shaft and connecting bolts to bedplate/frame box
21. Plug box for electronic measuring instrument for checking condition of axial vibration damper
22. Tacho encoder for ME control system or Alpha lubrication system on MC engine
23. Tacho trigger ring for ME control system or Alpha lubrication system on MC engine

| Pos. no.: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
|-----------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|
| BWIII/RCF | A | A | A | A | B | A | B | A | A | A | A | A | B | B | A | A | A | A | A | A |
| BWIII/CFE | A | A | A | A | B | A | B | A | A | A | A | B | B | A | A | A | A | A | A |
| BWII/RCF | A |
| BWII/CFE | A | A | A | A | B | A | B | A | A | A | A | A | A | A | A | A | A | A | A | A | A |
| BWI/RCF | A | A | A | A | B | A | B | A | A | A | A | A | A | A | A | A | A | A | A | A | A |
| BWI/CFE | A | A | A | A | B | A | B | A | A | A | A | A | A | A | A | A | A | A | A | A | A |
| DMG/CFE | A | A | A | A | B | A | B | A | A | A | A | A | A | A | A | A | A | A | A | A | A |

A: Preparations to be carried out by engine builder
B: Parts supplied by PTO-maker
C: See text of pos. no.

Fig. 4.03.01b: Engine preparations for PTO
Crankshaft gear lubricated from the main engine lubricating oil system

The figures are to be added to the main engine capacity list:

<table>
<thead>
<tr>
<th></th>
<th>kW</th>
<th>700</th>
<th>1,200</th>
<th>1,800</th>
<th>2,600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal output of generator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lubricating oil flow</td>
<td>m³/h</td>
<td>4.1</td>
<td>4.1</td>
<td>4.9</td>
<td>6.2</td>
</tr>
<tr>
<td>Heat dissipation</td>
<td>kW</td>
<td>12.1</td>
<td>20.8</td>
<td>31.1</td>
<td>45.0</td>
</tr>
</tbody>
</table>

RCF gear with separate lubricating oil system:

<table>
<thead>
<tr>
<th></th>
<th>kW</th>
<th>700</th>
<th>1,200</th>
<th>1,800</th>
<th>2,600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal output of generator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooling water quantity</td>
<td>m³/h</td>
<td>14.1</td>
<td>22.1</td>
<td>30.0</td>
<td>39.0</td>
</tr>
<tr>
<td>Heat dissipation</td>
<td>kW</td>
<td>55</td>
<td>92</td>
<td>134</td>
<td>180</td>
</tr>
<tr>
<td>El. power for oil pump</td>
<td>kW</td>
<td>11.0</td>
<td>15.0</td>
<td>18.0</td>
<td>21.0</td>
</tr>
<tr>
<td>Dosage tank capacity</td>
<td>m³</td>
<td>0.40</td>
<td>0.51</td>
<td>0.69</td>
<td>0.95</td>
</tr>
<tr>
<td>El. power for Renk-controller</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24V DC ± 10%, 8 amp</td>
</tr>
</tbody>
</table>

From main engine:
Design lube oil pressure: 2.25 bar
Lube oil pressure at crankshaft gear: min. 1 bar
Lube oil working temperature: 50 °C
Lube oil type: SAE 30

Cooling water inlet temperature: 36 °C
Pressure drop across cooler: approximately 0.5 bar
Fill pipe for lube oil system store tank (~ø32)
Drain pipe to lube oil system drain tank (~ø40)
Electric cable between Renk terminal at gearbox and operator control panel in switchboard: Cable type FMGCG 19 x 2 x 0.5

Fig. 4.03.02: Necessary capacities for PTO/RCF, BW III/RCF system

![Diagram of lubricating oil system for RCF gear](image)

The letters refer to the ‘List of flanges’, which will be extended by the engine builder, when PTO systems are built on the main engine.

Fig. 4.03.03: Lubricating oil system for RCF gear
DMG/CFE Generators

Option: 4 85 259

Fig. 4.01.01 alternative 5, shows the DMG/CFE (Direct Mounted Generator/Constant Frequency Electrical) which is a low speed generator with its rotor mounted directly on the crankshaft and its stator bolted on to the frame box as shown in Figs. 4.03.04 and 4.03.05.

The DMG/CFE is separated from the crankcase by a plate and a labyrinth stuffing box.

The DMG/CFE system has been developed in co-operation with the German generator manufacturers Siemens and AEG, but similar types of generator can be supplied by others, e.g. Fuji, Taiyo and Nishishiba in Japan.

For generators in the normal output range, the mass of the rotor can normally be carried by the foremost main bearing without exceeding the permissible bearing load (see Fig. 4.03.05), but this must be checked by the engine manufacturer in each case.

If the permissible load on the foremost main bearing is exceeded, e.g. because a tuning wheel is needed, this does not preclude the use of a DMG/CFE.

Fig. 4.03.04: Standard engine, with direct mounted generator (DMG/CFE)
Fig. 4.03.05: Standard engine, with direct mounted generator and tuning wheel

Fig. 4.03.06: Diagram of DMG/CFE with static converter
In such a case, the problem is solved by installing a small, elastically supported bearing in front of the stator housing, as shown in Fig. 4.03.05.

As the DMG type is directly connected to the crankshaft, it has a very low rotational speed and, consequently, the electric output current has a low frequency – normally of the order of 15 Hz.

Therefore, it is necessary to use a static frequency converter between the DMG and the main switchboard. The DMG/CFE is, as standard, laid out for operation with full output between 100% and 70% and with reduced output between 70% and 50% of the engine speed at specified MCR.

Static converter

The static frequency converter system (see Fig. 4.03.06) consists of a static part, i.e. thyristors and control equipment, and a rotary electric machine.

The DMG produces a three-phase alternating current with a low frequency, which varies in accordance with the main engine speed. This alternating current is rectified and led to a thyristor inverter producing a three-phase alternating current with constant frequency.

Since the frequency converter system uses a DC intermediate link, no reactive power can be supplied to the electric mains. To supply this reactive power, a synchronous condenser is used. The synchronous condenser consists of an ordinary synchronous generator coupled to the electric mains.

Yard deliveries are:

1. Installation, i.e. seating in the ship for the synchronous condenser unit and for the static converter cubicles
2. Cooling water pipes to the generator if water cooling is applied
3. Cabling.

The necessary preparations to be made on the engine are specified in Figs. 4.03.01a and 4.03.01b.

SMG/CFE Generators

The PTO SMG/CFE (see Fig. 4.01.01 alternative 6) has the same working principle as the PTO DMG/CFE, but instead of being located on the front end of the engine, the alternator is installed aft of the engine, with the rotor integrated on the intermediate shaft.

In addition to the yard deliveries mentioned for the PTO DMG/CFE, the shipyard must also provide the foundation for the stator housing in the case of the PTO SMG/CFE.

The engine needs no preparation for the installation of this PTO system.

Extent of delivery for DMG/CFE units

The delivery extent is a generator fully built-on to the main engine including the synchronous condenser unit and the static converter cubicles which are to be installed in the engine room.

The DMG/CFE can, with a small modification, be operated both as a generator and as a motor (PTI).
PTO type: BW II/GCR

Power Take Off/Gear Constant Ratio

The PTO system type BWII/GCR illustrated in Fig. 4.01.01 alternative 5 can generate electrical power on board ships equipped with a controllable pitch propeller, running at constant speed.

The PTO unit is mounted on the tank top at the fore end of the engine see Fig. 4.04.01. The PTO generator is activated at sea, taking over the electrical power production on board when the main engine speed has stabilised at a level corresponding to the generator frequency required on board.

The installation length in front of the engine, and thus the engine room length requirement, naturally exceeds the length of the engine aft end mounted shaft generator arrangements. However, there is some scope for limiting the space requirement, depending on the configuration chosen.

PTO type: BW IV/GCR

Power Take Off/Gear Constant Ratio

The shaft generator system, type PTO BW IV/GCR, installed in the shaft line (Fig. 4.01.01 alternative 6) can generate power on board ships equipped with a controllable pitch propeller running at constant speed.

The PTO system can be delivered as a tunnel gear with hollow flexible coupling or, alternatively, as a generator step-up gear with thrust bearing and flexible coupling integrated in the shaft line.

The main engine needs no special preparation for mounting these types of PTO systems as they are connected to the intermediate shaft.

The PTO system installed in the shaft line can also be installed on ships equipped with a fixed pitch propeller or controllable pitch propeller running in
combinator mode. This will, however, require an additional RENK Constant Frequency gear (Fig. 4.01.01 alternative 2) or additional electrical equipment for maintaining the constant frequency of the generated electric power.

Tunnel gear with hollow flexible coupling

This PTO system is normally installed on ships with a minor electrical power take off load compared to the propulsion power, up to approximately 25% of the engine power.

The hollow flexible coupling is only to be dimensioned for the maximum electrical load of the power take off system and this gives an economic advantage for minor power take off loads compared to the system with an ordinary flexible coupling integrated in the shaft line.

The hollow flexible coupling consists of flexible segments and connecting pieces, which allow replacement of the coupling segments without dismounting the shaft line, see Fig. 4.04.02.

Generator step-up gear and flexible coupling integrated in the shaft line

For higher power take off loads, a generator step-up gear and flexible coupling integrated in the shaft line may be chosen due to first costs of gear and coupling.

The flexible coupling integrated in the shaft line will transfer the total engine load for both propulsion and electrical power and must be dimensioned accordingly.

The flexible coupling cannot transfer the thrust from the propeller and it is, therefore, necessary to make the gear-box with an integrated thrust bearing.

This type of PTO system is typically installed on ships with large electrical power consumption, e.g. shuttle tankers.

![Fig. 4.04.02: BW IV/GCR, tunnel gear](image-url)
Auxiliary Propulsion System/Take Home System

From time to time an Auxiliary Propulsion System/Take Home System capable of driving the CP propeller by using the shaft generator as an electric motor is requested.

MAN Diesel can offer a solution where the CP propeller is driven by the alternator via a two-speed tunnel gearbox. The electric power is produced by a number of GenSets. The main engine is disengaged by a clutch (RENK KAZ) made as an integral part of the shafting. The clutch is installed between the tunnel gearbox and the main engine, and conical bolts are used to connect and disconnect the main engine and the shafting. See Figure 4.04.03.

A thrust bearing, which transfers the auxiliary propulsion propeller thrust to the engine thrust bearing when the clutch is disengaged, is built into the RENK KAZ clutch. When the clutch is engaged, the thrust is transferred statically to the engine thrust bearing through the thrust bearing built into the clutch.

To obtain high propeller efficiency in the auxiliary propulsion mode, and thus also to minimise the auxiliary power required, a two-speed tunnel gear, which provides lower propeller speed in the auxiliary propulsion mode, is used.

The two-speed tunnel gear box is made with a friction clutch which allows the propeller to be clutched in at full alternator/motor speed where the full torque is available. The alternator/motor is started in the de-clutched condition with a start transformer.

The system can quickly establish auxiliary propulsion from the engine control room and/or bridge, even with unmanned engine room.

Re-establishment of normal operation requires attendance in the engine room and can be done within a few minutes.

Fig. 4.04.03: Auxiliary propulsion system
Waste Heat Recovery Systems (WHR)

This section is not applicable
L16/24 GenSet Data

Bore: 160 mm Stroke: 240 mm

<table>
<thead>
<tr>
<th>No. of Cyls.</th>
<th>A (mm)</th>
<th>* B (mm)</th>
<th>* C (mm)</th>
<th>H (mm)</th>
<th>** Dry weight GenSet (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 (1,000 r/min)</td>
<td>2,751</td>
<td>1,400</td>
<td>4,151</td>
<td>2,226</td>
<td>9.5</td>
</tr>
<tr>
<td>5 (1,200 r/min)</td>
<td>2,751</td>
<td>1,400</td>
<td>4,151</td>
<td>2,226</td>
<td>9.5</td>
</tr>
<tr>
<td>6 (1,000 r/min)</td>
<td>3,026</td>
<td>1,490</td>
<td>4,516</td>
<td>2,226</td>
<td>10.5</td>
</tr>
<tr>
<td>6 (1,200 r/min)</td>
<td>3,026</td>
<td>1,490</td>
<td>4,516</td>
<td>2,226</td>
<td>10.5</td>
</tr>
<tr>
<td>7 (1,000 r/min)</td>
<td>3,301</td>
<td>1,585</td>
<td>4,886</td>
<td>2,266</td>
<td>11.4</td>
</tr>
<tr>
<td>7 (1,200 r/min)</td>
<td>3,301</td>
<td>1,585</td>
<td>4,886</td>
<td>2,266</td>
<td>11.4</td>
</tr>
<tr>
<td>8 (1,000 r/min)</td>
<td>3,576</td>
<td>1,680</td>
<td>5,256</td>
<td>2,266</td>
<td>12.4</td>
</tr>
<tr>
<td>8 (1,200 r/min)</td>
<td>3,576</td>
<td>1,680</td>
<td>5,256</td>
<td>2,266</td>
<td>12.4</td>
</tr>
<tr>
<td>9 (1,000 r/min)</td>
<td>3,851</td>
<td>1,680</td>
<td>5,531</td>
<td>2,266</td>
<td>13.1</td>
</tr>
<tr>
<td>9 (1,200 r/min)</td>
<td>3,851</td>
<td>1,680</td>
<td>5,531</td>
<td>2,266</td>
<td>13.1</td>
</tr>
</tbody>
</table>

P Free passage between the engines, width 600 mm and height 2,000 mm
Q Min. distance between engines: 1,800 mm
* Depending on alternator
** Weight incl. standard alternator (based on a Leroy Somer alternator)
All dimensions and masses are approximate and subject to change without prior notice.

Fig. 4.06.01: Power and outline of L16/24
L16/24 GenSet Data

<table>
<thead>
<tr>
<th>Cyl.</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. continuous rating at 1,000 rpm kW</td>
<td>450</td>
<td>540</td>
<td>630</td>
<td>720</td>
<td>810</td>
</tr>
</tbody>
</table>

Engine Driven Pumps:
- H.T. cooling water pump m³/h: (2.0 bar)** 10.9 12.7 14.5 16.3 18.1
- L.T. cooling water pump m³/h: (1.7 bar)** 15.7 18.9 22.0 25.1 28.3
- Lubricating oil m³/h: (3-5.0 bar) 21 23 24 26 28

External Pumps:
- Diesel oil pump (5 bar at fuel oil inlet A1) m³/h: 0.31 0.38 0.44 0.50 0.57
- Fuel oil supply pump (4 bar discharge pressure) m³/h: 0.15 0.18 0.22 0.25 0.28
- Fuel oil circulating pump (8 bar at fuel oil inlet A1) m³/h: 0.32 0.38 0.45 0.51 0.57

Cooling Capacities:
- Lubricating oil kW: 79 95 110 126 142
- Charge air L.T. kW: 43 51 60 68 77
- Flow L.T. at 36°C inlet and 44°C outlet m³/h: 13.1 15.7 18.4 21.0 23.6
- Jacket cooling kW: 107 129 150 171 193
- Charge air H.T. kW: 107 129 150 171 193

Gas Data:
- Exhaust gas flow kg/h: 3,321 3,985 4,649 5,314 5,978
- Max. allowable back press. bar: 0.025 0.025 0.025 0.025 0.025
- Air consumption kg/h: 3.231 3.877 4.523 5.170 5.816

Starting Air System:
- Air consumption per start Nm: 0.47 0.56 0.65 0.75 0.84
- Air consumption per start Nm: 0.80 0.80 1.12 1.28 1.44

Heat Radiation:
- Engine kW: 11 13 15 17 19
- Alternator kW: (see separate data from the alternator maker)

The stated heat balances are based on tropical conditions, the flows are based on ISO ambient condition.

* The outlet temperature of the H.T. water is fixed to 80°C, and 44°C for L.T. water. At different inlet temperatures the flow will change accordingly.

Example: if the inlet temperature is 25°C, then the L.T. flow will change to (44-36)/(44-25)*100 = 42% of the original flow. If the temperature rises above 36°C, then the L.T. outlet will rise accordingly.

** Max. permission inlet pressure 2.0 bar.

Fig. 4.06.02a: List of capacities for L16/24 1,000 rpm
L16/24 GenSet Data

Max continues rating

<table>
<thead>
<tr>
<th>Cyl.</th>
<th>1,200 rpm</th>
<th>kW</th>
<th>500</th>
<th>660</th>
<th>770</th>
<th>880</th>
<th>990</th>
</tr>
</thead>
</table>

Engine driven pumps:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>bar</th>
<th>2.5</th>
<th>2.5</th>
<th>2.5</th>
<th>2.5</th>
<th>2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>LT cooling water pump</td>
<td>m³/h</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>HT cooling water pump</td>
<td>m³/h</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>Lubricating oil main pump</td>
<td>m³/h</td>
<td>21</td>
<td>21</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
</tbody>
</table>

Separate pumps:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>bar</th>
<th>0.35</th>
<th>0.46</th>
<th>0.54</th>
<th>0.61</th>
<th>0.69</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel oil pump</td>
<td>m³/h</td>
<td>0.35</td>
<td>0.46</td>
<td>0.54</td>
<td>0.61</td>
<td>0.69</td>
<td></td>
</tr>
<tr>
<td>Fuel oil supply pump</td>
<td>m³/h</td>
<td>0.17</td>
<td>0.22</td>
<td>0.26</td>
<td>0.30</td>
<td>0.34</td>
<td></td>
</tr>
<tr>
<td>Fuel oil circulating pump</td>
<td>m³/h</td>
<td>0.35</td>
<td>0.46</td>
<td>0.54</td>
<td>0.62</td>
<td>0.70</td>
<td></td>
</tr>
</tbody>
</table>

Cooling capacity:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>kW</th>
<th>79</th>
<th>103</th>
<th>122</th>
<th>140</th>
<th>159</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lubricating oil</td>
<td>kW</td>
<td>40</td>
<td>57</td>
<td>70</td>
<td>82</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Total LT system</td>
<td>kW</td>
<td>119</td>
<td>160</td>
<td>192</td>
<td>222</td>
<td>254</td>
<td></td>
</tr>
<tr>
<td>Flow LT at 36°C inlet and 44°C outlet</td>
<td>m³/h</td>
<td>13</td>
<td>17</td>
<td>21</td>
<td>24</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Jacket cooling</td>
<td>kW</td>
<td>119</td>
<td>162</td>
<td>191</td>
<td>220</td>
<td>249</td>
<td></td>
</tr>
<tr>
<td>Charge air HT</td>
<td>kW</td>
<td>123</td>
<td>169</td>
<td>190</td>
<td>211</td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>Total HT system</td>
<td>kW</td>
<td>242</td>
<td>331</td>
<td>381</td>
<td>431</td>
<td>479</td>
<td></td>
</tr>
<tr>
<td>Flow HT at 44°C inlet and 80°C outlet</td>
<td>m³/h</td>
<td>6</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Total from engine</td>
<td>kW</td>
<td>361</td>
<td>491</td>
<td>573</td>
<td>653</td>
<td>733</td>
<td></td>
</tr>
<tr>
<td>LT flow at 36°C inlet</td>
<td>m³/h</td>
<td>13</td>
<td>17</td>
<td>21</td>
<td>24</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>LT temp. Outlet engine</td>
<td>°C</td>
<td>60</td>
<td>61</td>
<td>60</td>
<td>60</td>
<td>59</td>
<td></td>
</tr>
</tbody>
</table>

Gas Data:

<table>
<thead>
<tr>
<th></th>
<th>kg/h</th>
<th>3,400</th>
<th>4,600</th>
<th>5,500</th>
<th>6,200</th>
<th>7,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exhaust gas flow</td>
<td>kg/h</td>
<td>3,400</td>
<td>4,600</td>
<td>5,500</td>
<td>6,200</td>
<td>7,000</td>
</tr>
<tr>
<td>Max. Allowable back press.</td>
<td>bar</td>
<td>0.025</td>
<td>0.025</td>
<td>0.025</td>
<td>0.025</td>
<td>0.025</td>
</tr>
<tr>
<td>Air consumption</td>
<td>kg/h</td>
<td>3,280</td>
<td>4,500</td>
<td>5,300</td>
<td>6,000</td>
<td>6,800</td>
</tr>
</tbody>
</table>

Starting Air System:

<table>
<thead>
<tr>
<th></th>
<th>Nm</th>
<th>0.47</th>
<th>0.56</th>
<th>0.65</th>
<th>0.75</th>
<th>0.84</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air consumption per start</td>
<td>Nm</td>
<td>0.80</td>
<td>0.96</td>
<td>1.12</td>
<td>1.28</td>
<td>1.44</td>
</tr>
</tbody>
</table>

Heat Radiation:

<table>
<thead>
<tr>
<th></th>
<th>kW</th>
<th>9</th>
<th>13</th>
<th>15</th>
<th>18</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine</td>
<td>kW</td>
<td>(see separate data from the alternator maker)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternator</td>
<td>kW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The stated heat balances are based on tropical conditions. The exhaust gas data (exhaust gas flow, exhaust gas temp. and air consumption) are based on ISO ambient condition.

* The outlet temperature of the HT water is fixed to 80°C, and 44°C for the LT water.

At different inlet temperature the flow will change accordingly.

Example: If the inlet temperature is 25°C then the LT flow will change to (44-36)/(44-25)*100 = 42% of the original flow. If the temperature rises above 36°C, then the L.T. outlet will rise accordingly.

Fig. 4.06.02b: List of capacities for L16/24 1,200 rpm
L21/31 GenSet Data

Bore: 210 mm

<table>
<thead>
<tr>
<th>Cylinder no</th>
<th>Power layout</th>
<th>Stroke: 310 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>900 r/min Eng. kW</td>
<td>60 Hz Gen. kW</td>
</tr>
<tr>
<td>5L21/31</td>
<td>1,000</td>
<td>950</td>
</tr>
<tr>
<td>6L21/31</td>
<td>1,320</td>
<td>1,254</td>
</tr>
<tr>
<td>7L21/31</td>
<td>1,540</td>
<td>1,463</td>
</tr>
<tr>
<td>8L21/31</td>
<td>1,760</td>
<td>1,672</td>
</tr>
<tr>
<td>9L21/31</td>
<td>1,980</td>
<td>1,881</td>
</tr>
</tbody>
</table>

Cyl. no | A (mm) | * B (mm) | * C (mm) | H (mm) | **Dry weight GenSet (t)**

<table>
<thead>
<tr>
<th>Cylinder no</th>
<th>A (mm)</th>
<th>B (mm)</th>
<th>C (mm)</th>
<th>H (mm)</th>
<th>GenSet (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3,959</td>
<td>1,820</td>
<td>5,680</td>
<td>3,180</td>
<td>21.5</td>
</tr>
<tr>
<td>6</td>
<td>4,314</td>
<td>1,870</td>
<td>6,086</td>
<td>3,180</td>
<td>23.7</td>
</tr>
<tr>
<td>7</td>
<td>4,669</td>
<td>1,970</td>
<td>6,537</td>
<td>3,180</td>
<td>25.9</td>
</tr>
<tr>
<td>8</td>
<td>5,024</td>
<td>2,250</td>
<td>7,210</td>
<td>3,287</td>
<td>28.5</td>
</tr>
<tr>
<td>9</td>
<td>5,379</td>
<td>2,400</td>
<td>7,660</td>
<td>3,287</td>
<td>30.9</td>
</tr>
</tbody>
</table>

P Free passage between the engines, width 600 mm and height 2000 mm.
Q Min. distance between engines: 2400 mm (without gallery) and 2600 mm (with galley)
* Depending on alternator
** Weight incl. standard alternator (based on a Uljanik alternator)

All dimensions and masses are approximate, and subject to changes without prior notice.

Fig. 4.07.01: Power and outline of L21/31
L21/31 GenSet Data

<table>
<thead>
<tr>
<th>Maximum continuous rating at 900 rpm</th>
<th>Cyl. 5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>kW</td>
<td>950</td>
<td>1,320</td>
<td>1,540</td>
<td>1,760</td>
<td>1,980</td>
</tr>
</tbody>
</table>

Engine-driven pumps:
- LT cooling water pump: 1-2.5 bar m³/h
 - 55 55 55 55 55
- HT cooling water pump: 1-2.5 bar m³/h
 - 55 55 55 55 55
- Lubricating oil pump: 3-5 bar m³/h
 - 31 31 41 41 41

External pumps:
- Max. delivery pressure of cooling water pumps bar
 - 2.5 2.5 2.5 2.5 2.5
- Diesel oil pump (5 bar at fuel oil inlet A1) m³/h
 - 0.65 0.91 1.06 1.21 1.36
- Fuel oil supply pump (4 bar discharge pressure) m³/h
 - 0.32 0.44 0.52 0.59 0.67
- Fuel oil circulating pump (8 bar at fuel oil inlet A1) m³/h
 - 0.66 0.92 1.07 1.23 1.38

Cooling capacities:
- Lubricating oil kW
 - 195 158 189 218 247
- LT charge air kW
 - 118 313 366 418 468
- Total LT system kW
 - 313 471 555 636 715
- LT flow at 36°C inlet and 44°C outlet* m³/h
 - 27.0 44.0 48.1 51.9 54.0
- Jacket cooling kW
 - 154 274 326 376 427
- HT charge air kW
 - 201 337 383 429 475
- Total HT system kW
 - 355 611 709 805 902
- HT flow at 44°C inlet and 80°C outlet* m³/h
 - 8.5 19.8 22.6 25.3 27.9
- Total from engine kW
 - 668 1082 1264 1441 1617
- LT flow from engine at 36°C inlet m³/h
 - 27.0 43.5 47.6 51.3 53.5
- LT outlet temperature from engine at 36°C inlet °C
 - 55 58 59 61 63

Gas data:
- Exhauast gas flow kg/h
 - 6,679 9,600 11,200 12,800 14,400
- Exhaust gas temperature at turbine outlet °C
 - 335 348 348 348 348
- Maximum allowable back pressure bar
 - 0.025 0.025 0.025 0.025 0.025
- Air consumption kg/h
 - 6,489 9,330 10,900 12,400 14,000

Starting air system:
- Air consumption per start incl. air for jet assist Nm³
 - 1.0 1.2 1.4 1.6 1.8

Heat radiation:
- Engine kW
 - 49 50 54 58
- Alternator kW
 - (See separate data from alternator maker)

The stated heat balances are based on 100% load and tropical condition.
The mass flows and exhaust gas temperature are based on ISO ambient condition.
* The outlet temperature of the HT water is fixed to 80°C, and 44°C for the LT water.
 - At different inlet temperature the flow will change accordingly.
Example: If the inlet temperature is 25°C then the LT flow will change to (44-36)/(44-25)*100 = 42% of the original flow.
The HT flow will not change.

Fig. 4.07.02a: List of capacities for L21/31, 900 rpm
L21/31 GenSet Data

Maximum continuous rating at 1000 rpm

<table>
<thead>
<tr>
<th>Cyl</th>
<th>1,000</th>
<th>1,320</th>
<th>1,540</th>
<th>1,760</th>
<th>1,980</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>kW</td>
<td>kW</td>
<td>kW</td>
<td>kW</td>
<td>kW</td>
</tr>
<tr>
<td>6</td>
<td>kW</td>
<td>kW</td>
<td>kW</td>
<td>kW</td>
<td>kW</td>
</tr>
<tr>
<td>7</td>
<td>kW</td>
<td>kW</td>
<td>kW</td>
<td>kW</td>
<td>kW</td>
</tr>
<tr>
<td>8</td>
<td>kW</td>
<td>kW</td>
<td>kW</td>
<td>kW</td>
<td>kW</td>
</tr>
<tr>
<td>9</td>
<td>kW</td>
<td>kW</td>
<td>kW</td>
<td>kW</td>
<td>kW</td>
</tr>
</tbody>
</table>

Engine-driven pumps:
- LT cooling water pump (1-2.5 bar) m³/h: 61, 61, 61, 61, 61
- HT cooling water pump (1-2.5 bar) m³/h: 61, 61, 61, 61, 61
- Lubricating oil pump (3-5 bar) m³/h: 34, 34, 46, 46, 46

External pumps:
- Max. delivery pressure of cooling water pumps: bar: 2.5, 2.5, 2.5, 2.5, 2.5
- Diesel oil pump (5 bar at fuel oil inlet A1) m³/h: 0.69, 0.92, 1.08, 1.23, 1.38
- Fuel oil supply pump (4 bar discharge pressure) m³/h: 0.34, 0.45, 0.53, 0.60, 0.68
- Fuel oil circulating pump (8 bar at fuel oil inlet A1) m³/h: 0.70, 0.83, 1.09, 1.25, 1.40

Cooling capacities:
- Lubricating oil kW: 206, 162, 192, 222, 252
- LT charge air kW: 125, 333, 388, 443, 499
- Total LT system kW: 331, 495, 580, 665, 751
- LT flow at 36°C inlet and 44°C outlet* m³/h: 35.5, 47.8, 52.1, 56.2, 60.5
- Jacket cooling kW: 163, 280, 332, 383, 435
- HT charge air kW: 212, 361, 411, 460, 509
- Total HT system kW: 374, 641, 743, 843, 944
- HT flow at 44°C inlet and 80°C outlet* m³/h: 8.9, 20.9, 23.9, 26.7, 29.5
- Total from engine kW: 705, 1136, 1323, 1508, 1695
- LT flow from engine at 36°C inlet m³/h: 35.5, 47.2, 51.5, 55.6, 59.9
- LT outlet temperature from engine at 36°C inlet °C: 53, 57, 59, 60, 61

(1-string cooling water system)

Gas data:
- Exhaust gas flow kg/h: 6,920, 10,200, 11,900, 13,600, 15,300
- Exhaust gas temperature at turbine outlet °C: 335, 333, 333, 333, 333
- Maximum allowable back pressure bar: 0.025, 0.025, 0.025, 0.025, 0.025
- Air consumption kg/h: 6,720, 9,940, 11,600, 13,200, 14,900

Starting air system:
- Air consumption per start incl. air for jet assist Nm³: 1.0, 1.2, 1.4, 1.6, 1.8

Heat radiation:
- Engine kW: 21, 47, 50, 54, 56
- Alternator kW: (See separate data from alternator maker)

The stated heat balances are based on 100% load and tropical condition.
The mass flows and exhaust gas temperature are based on ISO ambient condition.

* The outlet temperature of the HT water is fixed to 80°C, and 44°C for the LT water.
 At different inlet temperature the flow will change accordingly.

Example: If the inlet temperature is 25°C then the LT flow will change to (44-36)/(44-25)*100 = 42% of the original flow.
The HT flow will not change.

Fig. 4.07.02a: List of capacities for L21/31, 1,000 rpm
L23/30H GenSet Data

Bore: 225 mm

<table>
<thead>
<tr>
<th>No. of Cyls.</th>
<th>A (mm)</th>
<th>B (mm)</th>
<th>C (mm)</th>
<th>H (mm)</th>
<th>Dry weight GenSet (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 (720 r/min)</td>
<td>3,369</td>
<td>2,155</td>
<td>5,524</td>
<td>2,383</td>
<td>18.0</td>
</tr>
<tr>
<td>5 (750 r/min)</td>
<td>3,369</td>
<td>2,155</td>
<td>5,524</td>
<td>2,383</td>
<td>18.0</td>
</tr>
<tr>
<td>6 (720 r/min)</td>
<td>3,738</td>
<td>2,265</td>
<td>6,004</td>
<td>2,383</td>
<td>19.7</td>
</tr>
<tr>
<td>6 (750 r/min)</td>
<td>3,738</td>
<td>2,265</td>
<td>6,004</td>
<td>2,383</td>
<td>19.7</td>
</tr>
<tr>
<td>6 (900 r/min)</td>
<td>3,738</td>
<td>2,265</td>
<td>6,004</td>
<td>2,383</td>
<td>21.0</td>
</tr>
<tr>
<td>7 (720 r/min)</td>
<td>4,109</td>
<td>2,395</td>
<td>6,504</td>
<td>2,815</td>
<td>21.4</td>
</tr>
<tr>
<td>7 (750 r/min)</td>
<td>4,109</td>
<td>2,395</td>
<td>6,504</td>
<td>2,815</td>
<td>21.4</td>
</tr>
<tr>
<td>7 (900 r/min)</td>
<td>4,109</td>
<td>2,395</td>
<td>6,504</td>
<td>2,815</td>
<td>22.8</td>
</tr>
<tr>
<td>8 (720 r/min)</td>
<td>4,475</td>
<td>2,480</td>
<td>6,959</td>
<td>2,815</td>
<td>23.5</td>
</tr>
<tr>
<td>8 (750 r/min)</td>
<td>4,475</td>
<td>2,480</td>
<td>6,959</td>
<td>2,815</td>
<td>23.5</td>
</tr>
<tr>
<td>8 (900 r/min)</td>
<td>4,475</td>
<td>2,340</td>
<td>6,815</td>
<td>2,815</td>
<td>24.5</td>
</tr>
</tbody>
</table>

Stroke: 300 mm

Power layout

<table>
<thead>
<tr>
<th>720 r/min</th>
<th>60 Hz</th>
<th>Gen. kW</th>
<th>750 r/min</th>
<th>50 Hz</th>
<th>Gen. kW</th>
<th>900 r/min</th>
<th>60 Hz</th>
<th>Gen. kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eng. kW</td>
<td>Gen. kW</td>
<td></td>
<td>Eng. kW</td>
<td>Gen. kW</td>
<td></td>
<td>Eng. kW</td>
<td>Gen. kW</td>
<td></td>
</tr>
<tr>
<td>5L23/30H</td>
<td>650</td>
<td>620</td>
<td>675</td>
<td>640</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6L23/30H</td>
<td>780</td>
<td>740</td>
<td>810</td>
<td>770</td>
<td>960</td>
<td>910</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7L23/30H</td>
<td>910</td>
<td>865</td>
<td>945</td>
<td>900</td>
<td>1,120</td>
<td>1,065</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8L23/30H</td>
<td>1,040</td>
<td>990</td>
<td>1,080</td>
<td>1,025</td>
<td>1,280</td>
<td>1,215</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P Free passage between the engines, width 600 mm and height 2,000 mm
Q Min. distance between engines: 2,250 mm
* Depending on alternator
** Weight includes a standard alternator, make A. van Kaick.

All dimensions and masses are approximate and subject to change without prior notice.

Fig. 4.08.01: Power and outline of L23/30H
L23/30H GenSet Data

Engine-driven Pumps:

<table>
<thead>
<tr>
<th>Part Description</th>
<th>Max. continuous rating at 720/750 RPM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kW</td>
</tr>
<tr>
<td>Fuel oil feed pump</td>
<td>525/550</td>
</tr>
<tr>
<td>L.T. cooling water pump</td>
<td>650/675</td>
</tr>
<tr>
<td>H.T. cooling water pump</td>
<td>780/810</td>
</tr>
<tr>
<td>Lub. oil main pump</td>
<td>910/945</td>
</tr>
<tr>
<td></td>
<td>1,040/1,080</td>
</tr>
</tbody>
</table>

Separate Pumps:

<table>
<thead>
<tr>
<th>Part Description</th>
<th>Max. continuous rating at 720/750 RPM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m³/h</td>
</tr>
<tr>
<td>Diesel oil pump</td>
<td>0.36/0.38</td>
</tr>
<tr>
<td>Fuel oil supply pump ***</td>
<td>0.37/0.39</td>
</tr>
<tr>
<td>Fuel oil circulating pump</td>
<td>0.37/0.39</td>
</tr>
<tr>
<td>L.T. cooling water pump*</td>
<td>35</td>
</tr>
<tr>
<td>L.T. cooling water pump**</td>
<td>48</td>
</tr>
<tr>
<td>H.T. cooling water pump</td>
<td>20</td>
</tr>
<tr>
<td>Lub. oil stand-by pump</td>
<td>14.0</td>
</tr>
</tbody>
</table>

Cooling Capacities:

Lubricating Oil:

<table>
<thead>
<tr>
<th>Part Description</th>
<th>Min. continuous rating at 720/750 RPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat dissipation</td>
<td>kW</td>
</tr>
<tr>
<td>L.T. cooling water quantity*</td>
<td>4.6</td>
</tr>
<tr>
<td>L.T. cooling water quantity**</td>
<td>18</td>
</tr>
<tr>
<td>Lub. oil temp. inlet cooler</td>
<td>67</td>
</tr>
<tr>
<td>L.T. cooling water temp. inlet cooler</td>
<td>36</td>
</tr>
</tbody>
</table>

Charge Air:

<table>
<thead>
<tr>
<th>Part Description</th>
<th>Min. continuous rating at 720/750 RPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat dissipation</td>
<td>kW</td>
</tr>
<tr>
<td>L.T. cooling water quantity</td>
<td>30</td>
</tr>
<tr>
<td>L.T. cooling water inlet cooler</td>
<td>36</td>
</tr>
</tbody>
</table>

Jacket Cooling:

<table>
<thead>
<tr>
<th>Part Description</th>
<th>Min. continuous rating at 720/750 RPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat dissipation</td>
<td>kW</td>
</tr>
<tr>
<td>H.T. cooling water quantity</td>
<td>20</td>
</tr>
<tr>
<td>H.T. cooling water temp. inlet cooler</td>
<td>77</td>
</tr>
</tbody>
</table>

Gas Data:

<table>
<thead>
<tr>
<th>Part Description</th>
<th>Min. continuous rating at 720/750 RPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exhaust gas flow</td>
<td>kg/h</td>
</tr>
<tr>
<td>Exhaust gas temp.</td>
<td>°C</td>
</tr>
<tr>
<td>Max. allowable back. press.</td>
<td>bar</td>
</tr>
<tr>
<td>Air consumption</td>
<td>kg/s</td>
</tr>
</tbody>
</table>

Starting Air System:

<table>
<thead>
<tr>
<th>Part Description</th>
<th>Min. continuous rating at 720/750 RPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air consumption per start</td>
<td>Nm³</td>
</tr>
</tbody>
</table>

Heat Radiation:

<table>
<thead>
<tr>
<th>Part Description</th>
<th>Min. continuous rating at 720/750 RPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine</td>
<td>kW</td>
</tr>
<tr>
<td>Generator</td>
<td>kW</td>
</tr>
</tbody>
</table>

The stated heat dissipation, capacities of gas and engine-driven pumps are given at 720 RPM. Heat dissipation gas and pump capacities at 750 RPM are 4% higher than stated. If L.T. cooling are sea water, the L.T. inlet is 32°C instead of 36°C.

Based on tropical conditions, except for exhaust flow and air consumption which are based on ISO conditions.

* Only valid for engines equipped with internal basic cooling system nos. 1 and 2.
** Only valid for engines equipped with combined coolers, internal basic cooling water system no. 3.
*** To compensate for built on pumps, ambient condition, calorific value and adequate circulations flow. The ISO fuel oil consumption is multiplied by 1.45.
L23/30H GenSet Data

Max. continuous rating at 900 RPM

<table>
<thead>
<tr>
<th>Cyl.</th>
<th>kW</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>960</td>
<td>1,120</td>
<td>1,280</td>
</tr>
</tbody>
</table>

Engine-driven Pumps:
- Fuel oil feed pump: (5.5-7.5 bar) m³/h 1.3, 1.3, 1.3
- L.T. cooling water pump: (1-2.5 bar) m³/h 69, 69, 69
- H.T. cooling water pump: (1-2.5 bar) m³/h 45, 45, 45
- Lub. oil main pump: (3.5-5 bar) m³/h 20, 20, 20

Separate Pumps:
- Fuel oil supply pump***: (4 bar discharge pressure) m³/h 0.34, 0.40, 0.45
- Fuel oil circulating pump: (8 bar at fuel oil outlet A) m³/h 0.70, 0.82, 0.94
- L.T. cooling water pump*: (1-2.5 bar) m³/h 52, 61, 70
- L.T. cooling water pump**: (1-2.5 bar) m³/h 63, 71, 85
- H.T. cooling water pump: (1-2.5 bar) m³/h 30, 35, 40
- Lub. oil stand-by pump: (3.5-5 bar) m³/h 17, 18, 19

Cooling Capacities:

Lubricating Oil:
- Heat dissipation kW 117, 137, 158
- L.T. cooling water quantity* m³/h 7.5, 8.8, 10.1
- SW L.T. cooling water quantity**: m³/h 18, 18, 25
- Lub. oil temp. inlet cooler °C 67, 67, 67
- L.T. cooling water temp. inlet cooler °C 36, 36, 36

Charge Air:
- Heat dissipation kW 369, 428, 487
- L.T. cooling water quantity m³/h 46, 53, 61
- L.T. cooling water inlet cooler °C 36, 36, 36

Jacket Cooling:
- Heat dissipation kW 239, 281, 323
- H.T. cooling water quantity m³/h 30, 35, 40
- H.T. cooling water temp. inlet cooler °C 77, 77, 77

Gas Data:
- Exhaust gas flow kg/h 8,370, 9,770, 11,160
- Exhaust gas temp. °C 325, 325, 325
- Max. allowable back. press. bar 0.025, 0.025, 0.025
- Air consumption kg/s 2.25, 2.62, 3.00

Starting Air System:
- Air consumption per start Nm³ 2.0, 2.0, 2.0

Heat Radiation:
- Engine kW 32, 37, 42
- Generator kW (See separate data from generator maker)

If L.T. cooling are sea water, the L.T. inlet is 32°C instead of 36°C.

Based on tropical conditions, except for exhaust flow and air consumption which are based on ISO conditions.

* Only valid for engines equipped with internal basic cooling water system nos. 1 and 2.
** Only valid for engines equipped with combined coolers, internal basic cooling water system no. 3.
*** To compensate for built on pumps, ambient condition, calorific value and adequate circulations flow. The ISO fuel oil consumption is multiplied by 1.45.

Fig. 4.08.02b: List of capacities for L23/30H, 900 rpm
L27/38 GenSet Data

<table>
<thead>
<tr>
<th>No. of Cyls.</th>
<th>A (mm)</th>
<th>* B (mm)</th>
<th>* C (mm)</th>
<th>H (mm)</th>
<th>**Dry weight GenSet (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 (720 r/min)</td>
<td>4,346</td>
<td>2,486</td>
<td>6,832</td>
<td>3,705</td>
<td>42.3</td>
</tr>
<tr>
<td>5 (750 r/min)</td>
<td>4,346</td>
<td>2,486</td>
<td>6,832</td>
<td>3,705</td>
<td>42.3</td>
</tr>
<tr>
<td>6 (720 r/min)</td>
<td>4,791</td>
<td>2,766</td>
<td>7,557</td>
<td>3,705</td>
<td>45.8</td>
</tr>
<tr>
<td>6 (750 r/min)</td>
<td>4,791</td>
<td>2,766</td>
<td>7,557</td>
<td>3,717</td>
<td>46.1</td>
</tr>
<tr>
<td>7 (720 r/min)</td>
<td>5,236</td>
<td>2,766</td>
<td>8,002</td>
<td>3,717</td>
<td>52.1</td>
</tr>
<tr>
<td>7 (750 r/min)</td>
<td>5,236</td>
<td>2,766</td>
<td>8,002</td>
<td>3,717</td>
<td>52.1</td>
</tr>
<tr>
<td>8 (720 r/min)</td>
<td>5,681</td>
<td>2,986</td>
<td>8,667</td>
<td>3,717</td>
<td>56.3</td>
</tr>
<tr>
<td>8 (750 r/min)</td>
<td>5,681</td>
<td>2,986</td>
<td>8,667</td>
<td>3,717</td>
<td>58.3</td>
</tr>
<tr>
<td>9 (720 r/min)</td>
<td>6,126</td>
<td>2,986</td>
<td>9,112</td>
<td>3,797</td>
<td>63.9</td>
</tr>
<tr>
<td>9 (750 r/min)</td>
<td>6,126</td>
<td>2,986</td>
<td>9,112</td>
<td>3,797</td>
<td>63.9</td>
</tr>
</tbody>
</table>

P Free passage between the engines, width 600 mm and height 2,000 mm
Q Min. distance between engines: 2,900 mm (without gallery) and 3,100 mm (with gallery)
* Depending on alternator
** Weight includes a standard alternator
All dimensions and masses are approximate and subject to change without prior notice.

Fig. 4.09.01: Power and outline of L27/38
L27/38 GenSet Data

<table>
<thead>
<tr>
<th>Cyl.</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max continues rating</td>
<td>720 RPM</td>
<td>kW</td>
<td>1,500</td>
<td>1,980</td>
<td>2,310</td>
</tr>
</tbody>
</table>

Engine driven pumps:

- LT cooling water pump (2.5 bar) m³/h: 58, 58, 58, 58, 58
- HT cooling water pump (2.5 bar) m³/h: 58, 58, 58, 58, 58
- Lubricating oil main pump (8 bar) m³/h: 64, 64, 92, 92, 92

Separate pumps:

- Max. Delivery pressure of cooling water pumps bar: 2.5, 2.5, 2.5, 2.5, 2.5
- Diesel oil pump (5 bar at fuel oil inlet A) m³/h: 1.02, 1.33, 1.55, 1.77, 2.00
- Fuel oil Supply pump (4 bar at discharge pressure) m³/h: 0.50, 0.66, 0.76, 0.87, 0.98
- Fuel oil circulating pump (8 bar at fuel oil inlet A) m³/h: 1.03, 1.35, 1.57, 1.80, 2.02

Cooling capacity:

- Lubricating oil kW: 206, 283, 328, 376, 420
- Charge air LT kW: 144, 392, 436, 473, 504
- Total LT system kW: 350, 675, 764, 849, 924
- Flow LT at 36°C inlet and 44°C outlet m³/h: 38, 58, 58, 58, 58
- Jacket cooling kW: 287, 486, 573, 664, 754
- Charge air HT kW: 390, 558, 640, 722, 802
- Total HT system kW: 677, 1,044, 1,213, 1,386, 1,556
- Flow HT at 44°C inlet and 80°C outlet m³/h: 16, 22, 27, 32, 38
- Total from engine kW: 1,027, 1,719, 1,977, 2,235, 2,480
- LT flow at 36°C inlet m³/h: 38, 58, 58, 58, 58
- LT temp. Outlet engine °C: 59, 58, 61, 64, 68

Gas Data:

- Exhaust gas flow kg/h: 10,476, 15,000, 17,400, 19,900, 22,400
- Max. Allowable back press. bar: 0.025, 0.025, 0.025, 0.025, 0.025
- Air consumption kg/h: 10,177, 14,600, 17,000, 19,400, 21,800

Starting Air System:

- Air consumption per start Nm³: 2.5, 2.9, 3.3, 3.8, 4.3

Heat Radiation:

- Engine kW: 53, 64, 75, 68, 73
- Alternator kW (see separate data from the alternator maker)

The stated heat balances are based on tropical conditions. The exhaust gas data (exhaust gas flow, exhaust gas temp. and air consumption) are based on ISO ambient condition.

* The outlet temperature of the HT water is fixed to 80°C, and 44°C for the LT water

At different inlet temperature the flow will change accordingly.

Example: If the inlet temperature is 25°C then the LT flow will change to (46-36)/(46-25)*100 = 53% of the original flow.

The HT flow will not change.

Fig. 4.09.02a: List of capacities for L27/38, 720 rpm
L27/38 GenSet Data

<table>
<thead>
<tr>
<th>Cyl.</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max continues rating</td>
<td>750 RPM</td>
<td>kW</td>
<td>1,600</td>
<td>1,980</td>
<td>2,310</td>
</tr>
</tbody>
</table>

Engine driven pumps:
- LT cooling water pump: 2.5 bar m³/h 70 70 70 70 70
- HT cooling water pump: 2.5 bar m³/h 70 70 70 70 70
- Lubricating oil main pump: 8 bar m³/h 66 66 96 96 96

Separate pumps:
- Max. Delivery pressure of cooling water pumps: bar 2.5 2.5 2.5 2.5 2.5
- Diesel oil pump: (5 bar at fuel oil inlet A1) m³/h 1.10 1.34 1.57 1.79 2.01
- Fuel oil supply pump: (4 bar discharge pressure) m³/h 0.54 0.66 0.77 0.88 0.99
- Fuel oil circulating pump: (8 bar at fuel oil inlet A1) m³/h 1.11 1.36 1.59 1.81 2.04

Cooling capacity:
- Lubricating oil kW 217 283 328 376 420
- Charge air LT kW 155 392 436 473 504
- Total LT system kW 372 675 764 849 924
- Flow LT at 36°C inlet and 44°C outlet m³/h 40 70 70 70 70
- Jacket cooling kW 402 486 573 664 754
- Charge air HT kW 457 558 640 722 802
- Total HT system kW 859 1,044 1,213 1,386 1,556
- Flow HT at 44°C inlet and 80°C outlet m³/h 21 22 27 32 38

Gas Data:
- Exhaust gas flow kg/h 11,693 15,000 17,400 19,900 22,400
- Exhaust gas temp. °C 330 305 305 305 305
- Max. Allowable back press. bar 0.025 0.025 0.025 0.025 0.025
- Air consumption kg/h 11,662 14,600 17,000 19,400 21,800

Starting Air System:
- Air consumption per start Nm³ 2.5 2.9 3.3 3.8 4.3

Heat Radiation:
- Engine kW 54 64 75 68 73
- Alternator kW (see separate data from the alternator maker)

The stated heat balances are based on tropical conditions. The exhaust gas data (exhaust gas flow, exhaust gas temp. and air consumption) are based on ISO ambient condition.

* The outlet temperature of the HT water is fixed to 80°C, and 44°C for the LT water.

At different inlet temperature the flow will change accordingly.

Example: If the inlet temperature is 25°C then the LT flow will change to (46-36)/(46-25)*100 = 53% of the original flow. The HT flow will not change.

Fig. 4.09.02b: List of capacities for L27/38, 750 rpm
L28/32H GenSet Data

<table>
<thead>
<tr>
<th>Bore: 280 mm</th>
<th>Power layout</th>
<th>Stroke: 320 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>720 r/min</td>
<td>60 Hz</td>
</tr>
<tr>
<td></td>
<td>Eng. kW</td>
<td>Gen. kW</td>
</tr>
<tr>
<td>5L28/32H</td>
<td>1,050</td>
<td>1,000</td>
</tr>
<tr>
<td>6L28/32H</td>
<td>1,260</td>
<td>1,200</td>
</tr>
<tr>
<td>7L28/32H</td>
<td>1,470</td>
<td>1,400</td>
</tr>
<tr>
<td>8L28/32H</td>
<td>1,680</td>
<td>1,600</td>
</tr>
<tr>
<td>9L28/32H</td>
<td>1,890</td>
<td>1,800</td>
</tr>
</tbody>
</table>

Fig. 4.10.01: Power and outline of L28/32H

<table>
<thead>
<tr>
<th>No. of Cyls.</th>
<th>A (mm)</th>
<th>* B (mm)</th>
<th>* C (mm)</th>
<th>H (mm)</th>
<th>Dry weight GenSet (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 (720 r/min)</td>
<td>4,279</td>
<td>2,400</td>
<td>6,679</td>
<td>3,184</td>
<td>32.6</td>
</tr>
<tr>
<td>5 (750 r/min)</td>
<td>4,279</td>
<td>2,400</td>
<td>6,679</td>
<td>3,184</td>
<td>32.6</td>
</tr>
<tr>
<td>6 (720 r/min)</td>
<td>4,759</td>
<td>2,510</td>
<td>7,269</td>
<td>3,184</td>
<td>36.3</td>
</tr>
<tr>
<td>6 (750 r/min)</td>
<td>4,759</td>
<td>2,510</td>
<td>7,269</td>
<td>3,184</td>
<td>36.3</td>
</tr>
<tr>
<td>7 (720 r/min)</td>
<td>5,499</td>
<td>2,680</td>
<td>8,179</td>
<td>3,374</td>
<td>39.4</td>
</tr>
<tr>
<td>7 (750 r/min)</td>
<td>5,499</td>
<td>2,680</td>
<td>8,179</td>
<td>3,374</td>
<td>39.4</td>
</tr>
<tr>
<td>8 (720 r/min)</td>
<td>5,979</td>
<td>2,770</td>
<td>8,749</td>
<td>3,374</td>
<td>40.7</td>
</tr>
<tr>
<td>8 (750 r/min)</td>
<td>5,979</td>
<td>2,770</td>
<td>8,749</td>
<td>3,374</td>
<td>40.7</td>
</tr>
<tr>
<td>9 (720 r/min)</td>
<td>6,199</td>
<td>2,690</td>
<td>8,889</td>
<td>3,534</td>
<td>47.1</td>
</tr>
<tr>
<td>9 (750 r/min)</td>
<td>6,199</td>
<td>2,690</td>
<td>8,889</td>
<td>3,534</td>
<td>47.1</td>
</tr>
</tbody>
</table>

- **P** Free passage between the engines, width 600 mm and height 2,000 mm
- **Q** Min. distance between engines: 2,655 mm (without gallery) and 2,850 mm (with gallery)
- * Depending on alternator
- ** Weight includes a standard alternator, make A. van Kaick

178 33 92-1.3
L28/32H GenSet Data

<table>
<thead>
<tr>
<th>Cyl.</th>
<th>5-ECR</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. continuous rating at 720/750 RPM kW</td>
<td>875/925</td>
<td>1050/1100</td>
<td>1260/1320</td>
<td>1470/1540</td>
<td>1680/1760</td>
<td>1890/1980</td>
</tr>
</tbody>
</table>

Engine-driven Pumps:

- **Fuel oil feed pump** (5.5-7.5 bar) m³/h: 1.4, 1.4, 1.4, 1.4, 1.4, 1.4
- **L.T. cooling water pump** (1-2.5 bar) m³/h: 45, 45, 60, 70, 75, 75
- **H.T. cooling water pump** (1-2.5 bar) m³/h: 45, 45, 45, 60, 60, 60
- **Lub. oil main pump** (3-5 bar) m³/h: 23, 23, 23, 31, 31, 31

Separate Pumps:

- **Diesel oil Pump** (4 bar at fuel oil inlet A) m³/h: 0.60/0.64, 0.73/0.77, 0.88/0.92, 1.02/1.08, 1.17/1.23, 1.32/1.38
- **Fuel oil supply pump*** (4 bar discharge pressure) m³/h: 0.29/0.31, 0.36/0.38, 0.43/0.45, 0.50/0.53, 0.57/0.60, 0.64/0.68
- **Fuel oil circulating pump** (8 bar at fuel oil inlet A) m³/h: 0.61/0.65, 0.74/0.78, 0.89/0.93, 1.04/1.09, 1.18/1.25, 1.33/1.40
- **L.T. cooling water pump*** (1-2.5 bar) m³/h: 45, 45, 54, 65, 77, 89
- **L.T. cooling water pump** (1-2.5 bar) m³/h: 65, 65, 73, 95, 105, 115
- **H.T. cooling water pump** (1-2.5 bar) m³/h: 37, 37, 45, 50, 55, 60
- **Lub. oil stand-by pump** (3-5 bar) m³/h: 22, 22, 23, 25, 27, 28

Cooling Capacities:

- **Lubricating Oil:**
 - Heat dissipation kW: 91, 105, 127, 149, 172, 194
 - L.T. cooling water quantity m³/h: 6.4, 7.8, 9.4, 11.0, 12.7, 14.4
 - SW L.T. cooling water quantity m³/h: 28, 28, 28, 40, 40, 40
 - Lub. oil temp. inlet cooler °C: 67, 67, 67, 67, 67, 67
 - L.T. cooling water temp. inlet cooler °C: 36, 36, 36, 36, 36, 36

- **Charge Air:**
 - Heat dissipation kW: 305, 393, 467, 541, 614, 687
 - L.T. cooling water quantity m³/h: 37, 37, 45, 55, 65, 75
 - L.T. cooling water inlet cooler °C: 36, 36, 36, 36, 36, 36

- **Jacket Cooling:**
 - Heat dissipation kW: 211, 264, 320, 375, 432, 489
 - H.T. cooling water quantity m³/h: 37, 37, 45, 50, 55, 60
 - H.T. cooling water temp. inlet cooler °C: 77, 77, 77, 77, 77, 77

- **Gas Data:**
 - Exhaust gas flow kg/h: 7,710, 9,260, 11,110, 12,970, 14,820, 16,670
 - Exhaust gas temp. °C: 305, 305, 305, 305, 305, 305
 - Max. allowable back. press. bar: 0.025, 0.025, 0.025, 0.025, 0.025, 0.025
 - Air consumption kg/s: 2.09, 2.51, 3.02, 3.52, 4.02, 4.53

- **Starting Air System:**
 - Air consumption per start Nm³: 2.5, 2.5, 2.5, 2.5, 2.5, 2.5

- **Heat Radiation:**
 - Engine kW: 22, 26, 32, 38, 44, 50
 - Generator kW (See separat data from generator maker)

The stated heat dissipation, capacities of gas and engine-driven pumps are given at 720 RPM. Heat dissipation gas and pump capacities at 750 RPM are 4% higher than stated. If L.T. cooling are sea water, the L.T. inlet is 32°C instead of 36°C. Based on tropical conditions, except for exhaust flow and air consumption which are based on ISO conditions.

* Only valid for engines equipped with internal basic cooling water system nos. 1 and 2.
** Only valid for engines equipped with combined coolers, internal basic cooling water system no. 3.
*** To compensate for built on pumps, ambient condition, calorific value and adequate circulations flow. The ISO fuel oil consumption is multiplied by 1.45.

Fig. 4.10.02: List of capacities for L28/32H
Installation Aspects
Space requirements and overhaul heights

Space Requirements for the Engine

The space requirements stated in Section 5.02 are valid for engines rated at nominal MCR (L).

The additional space needed for engines equipped with PTO is stated in Chapter 4.

If, during the project stage, the outer dimensions of the turbocharger seem to cause problems, it is possible, for the same number of cylinders, to use turbochargers with smaller dimensions by increasing the indicated number of turbochargers by one, see Chapter 3.

Overhaul of Engine

The distances stated from the centre of the crankshaft to the crane hook are for the normal lifting procedure and the reduced height lifting procedure (involving tilting of main components). The lifting capacity of a normal engine room crane can be found in Fig. 5.04.01.

The area covered by the engine room crane shall be wide enough to reach any heavy spare part required in the engine room.

A lower overhaul height is, however, available by using the MAN B&W Double-Jib crane, built by Danish Crane Building A/S, shown in Figs. 5.04.02 and 5.04.03.

Please note that the distance E in Fig. 5.02.01, given for a double-jib crane is from the centre of the crankshaft to the lower edge of the deck beam.

A special crane beam for dismantling the turbocharger must be fitted. The lifting capacity of the crane beam for dismantling the turbocharger is stated in Section 5.03.

The overhaul tools for the engine are designed to be used with a crane hook according to DIN 15400, June 1990, material class M and load capacity 1Am and dimensions of the single hook type according to DIN 15401, part 1.

The total length of the engine at the crankshaft level may vary depending on the equipment to be fitted on the fore end of the engine, such as adjustable counterweights, tuning wheel, moment compensators or PTO.

Please note that the latest version of the dimensioned drawing is available for download at www.mandiesel.com under ‘Marine’ → ‘Low-Speed’ → ‘MC Engine Programme’, choose engine type and click ‘Download installation Drawings for...’ the actual engine and turbocharger configuration. Select ‘Engine outline’ in the list of drawings available for download.
Space Requirement

Normal/minimum centre line distance for twin engine installation: 5,800/4,750 mm (4,750 mm for common gallery for starboard and port design engines).

The dimensions are given in mm, and are for guidance only. If the dimensions cannot be fulfilled, please contact MAN Diesel or our local representative.

Fig. 5.02.01a: Space requirement for the engine, turbocharger on exhaust side (4 59 122)
<table>
<thead>
<tr>
<th>Cyl. No.</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>6,602</td>
<td>7,492</td>
<td>8,382</td>
<td>9,272</td>
</tr>
<tr>
<td></td>
<td>6,970</td>
<td>7,860</td>
<td>8,750</td>
<td>9,640</td>
</tr>
<tr>
<td>B</td>
<td>4,197</td>
<td>4,197</td>
<td>4,197</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>4,027</td>
<td>4,277</td>
<td>4,277</td>
<td>4,277</td>
</tr>
<tr>
<td></td>
<td>4,027</td>
<td>-</td>
<td>-</td>
<td>4,277</td>
</tr>
<tr>
<td>C</td>
<td>3,017</td>
<td>3,342</td>
<td>3,542</td>
<td>3,787</td>
</tr>
<tr>
<td></td>
<td>2,916</td>
<td>3,221</td>
<td>3,421</td>
<td>3,521</td>
</tr>
<tr>
<td></td>
<td>2,911</td>
<td>3,255</td>
<td>3,455</td>
<td>3,546</td>
</tr>
<tr>
<td>D</td>
<td>3,140</td>
<td>3,200</td>
<td>3,230</td>
<td>3,285</td>
</tr>
</tbody>
</table>

Fore end: A minimum shows basic engine
A maximum shows engine with built-on tuning wheel

For PTO: See corresponding space requirement

The required space to the engine room casing includes mechanical top bracing

Dimensions according to turbocharger choice at nominal MCR

The dimension includes a cofferdam of 600 mm and must fulfil minimum height to tank top according to classification rules

The minimum distance from crankshaft centre line to lower edge of deck beam, when using MAN B&W Double Jib Crane

Minimum overhaul height, normal lifting procedure

Minimum overhaul height, reduced height lifting procedure

See 'Engine Top Bracing', if top bracing fitted on camshaft side

Maximum 30° when engine room has minimum headroom above the turbocharger

Fig. 5.02.01b: Space requirement for the engine
Normal/minimum centre line distance for twin engine installation: 5,800/4,750 mm (4,750 mm for common gallery for starboard and port design engines).

The dimensions are given in mm, and are for guidance only. If the dimensions cannot be fulfilled, please contact MAN Diesel or our local representative.

Fig. 5.02.02a: Space requirement for the engine, turbocharger on aft end (4 59 124)
Table: Space Requirement for the Engine

<table>
<thead>
<tr>
<th>Cyl. No.</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>min.</td>
<td>6,602</td>
<td>7,492</td>
<td>8,382</td>
</tr>
<tr>
<td></td>
<td>max.</td>
<td>6,970</td>
<td>7,680</td>
<td>8,750</td>
</tr>
</tbody>
</table>

Fore end: A minimum shows basic engine
A maximum shows engine with built-on tuning wheel
For PTO: See corresponding space requirement

<table>
<thead>
<tr>
<th>B</th>
<th>2,655</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MAN Diesel TCA</td>
</tr>
<tr>
<td></td>
<td>ABB TPL</td>
</tr>
<tr>
<td></td>
<td>Mitsubishi MET</td>
</tr>
</tbody>
</table>

The required space to the engine room casing includes top bracing

<table>
<thead>
<tr>
<th>C</th>
<th>3,355</th>
<th>3,755</th>
<th>4,030</th>
<th>4,312</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3,254</td>
<td>3,634</td>
<td>3,909</td>
<td>4,046</td>
</tr>
<tr>
<td></td>
<td>3,249</td>
<td>3,668</td>
<td>3,943</td>
<td>4,071</td>
</tr>
</tbody>
</table>

MAN Diesel TCA
ABB TPL
Mitsubishi MET
Dimensions according to turbocharger choice at nominal MCR

<table>
<thead>
<tr>
<th>D</th>
<th>3,140</th>
<th>3,200</th>
<th>3,230</th>
<th>3,285</th>
</tr>
</thead>
</table>

The dimension includes a cofferdam of 600 mm and must fulfill minimum height to tank top according to classification rules

<table>
<thead>
<tr>
<th>E</th>
<th>8,100</th>
</tr>
</thead>
</table>

The minimum distance from crankshaft centre line to lower edge of deck beam, when using MAN B&W Double Jib Crane

<table>
<thead>
<tr>
<th>F</th>
<th>8,850</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8,300</td>
</tr>
</tbody>
</table>

Minimum overhaul height, normal lifting procedure
Minimum overhaul height, reduced height lifting procedure

<table>
<thead>
<tr>
<th>G</th>
<th>3,175</th>
</tr>
</thead>
</table>

See 'Engine Top Bracing', if top bracing fitted on camshaft side

<table>
<thead>
<tr>
<th>H</th>
<th>-</th>
<th>6,540</th>
<th>6,540</th>
<th>6,590</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6,472</td>
<td>6,497</td>
<td>6,497</td>
<td>6,497</td>
</tr>
<tr>
<td></td>
<td>6,527</td>
<td>-</td>
<td>6,542</td>
<td>-</td>
</tr>
</tbody>
</table>

MAN Diesel TCA
ABB TPL
Mitsubishi MET
Dimensions according to turbocharger choice at nominal MCR

<table>
<thead>
<tr>
<th>I</th>
<th>-</th>
<th>2,240</th>
<th>2,240</th>
<th>2,380</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2,070</td>
<td>2,302</td>
<td>2,302</td>
<td>2,302</td>
</tr>
<tr>
<td></td>
<td>2,240</td>
<td>-</td>
<td>2,269</td>
<td>-</td>
</tr>
</tbody>
</table>

MAN Diesel TCA
ABB TPL
Mitsubishi MET
Dimensions according to turbocharger choice at nominal MCR

<table>
<thead>
<tr>
<th>J</th>
<th>450</th>
</tr>
</thead>
</table>

Space for tightening control of holding down bolts

<table>
<thead>
<tr>
<th>K</th>
<th>See text</th>
</tr>
</thead>
</table>

K must be equal to or larger than the propeller shaft, if the propeller shaft is to be drawn into the engine room

<table>
<thead>
<tr>
<th>L</th>
<th>2,730</th>
<th>2,760</th>
<th>2,790</th>
<th>2,790</th>
</tr>
</thead>
</table>

Space for air cooler element overhaul

<table>
<thead>
<tr>
<th>N</th>
<th>1,878</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>1,452</td>
</tr>
<tr>
<td>R</td>
<td>1,742</td>
</tr>
<tr>
<td>S</td>
<td>1,448</td>
</tr>
<tr>
<td>V</td>
<td>0°, 15°, 30°, 45°, 60°, 75°, 90°</td>
</tr>
</tbody>
</table>

Maximum 15° when engine room has minimum headroom above the turbocharger

Fig. 5.02.02b: Space requirement for the engine
Crane beam for overhaul of turbocharger

For the overhaul of a turbocharger, a crane beam with trolleys is required at each end of the turbocharger.

Two trolleys are to be available at the compressor end and one trolley is needed at the gas inlet end.

Crane beam no. 1 is for dismantling of turbocharger components.
Crane beam no. 2 is for transporting turbocharger components.
See Figs. 5.03.01a and 5.03.02.

The crane beams can be omitted if the main engine room crane also covers the turbocharger area.

The crane beams are used and dimensioned for lifting the following components:

- Exhaust gas inlet casing
- Turbocharger inlet silencer
- Compressor casing
- Turbine rotor with bearings

The figures ‘a’ are stated on the ‘Engine and Gallery Outline’ drawing, Section 5.06.

The crane beams are to be placed in relation to the turbocharger(s) so that the components around the gas outlet casing can be removed in connection with overhaul of the turbocharger(s).

The crane beam can be bolted to brackets that are fastened to the ship structure or to columns that are located on the top platform of the engine.

The lifting capacity of the crane beam for the heaviest component ‘W’, is indicated in Fig. 5.03.01b for the various turbocharger makes. The crane beam shall be dimensioned for lifting the weight ‘W’ with a deflection of some 5 mm only.

HB indicates the position of the crane hook in the vertical plane related to the centre of the turbocharger. HB and b also specifies the minimum space for dismantling.

For engines with the turbocharger(s) located on the exhaust side, EO No. 4 59 122, the letter ‘a’ indicates the distance between vertical centrelines of the engine and the turbocharger.
Crane beam for turbochargers

Fig. 5.03.02: Crane beam for turbocharger
Engine room crane

1) The lifting tools for the engine are designed to fit together with a standard crane hook with a lifting capacity in accordance with the figure stated in the table. If a larger crane hook is used, it may not fit directly to the overhaul tools, and the use of an intermediate shackle or similar between the lifting tool and the crane hook will affect the requirements for the minimum lifting height in the engine room (dimension B).

2) The hatched area shows the height where an MAN B&W Double-Jib Crane has to be used.

Weight in kg including lifting tools	Crane capacity in tons selected in accordance with DIN and JIS standard capacities	Crane operating width in mm	Normal crane height to crane hook in mm for:	MAN B&W Double-Jib Crane
Cylinder cover complete with exhaust valve	Cylinder liner with cooling jacket	Piston with piston rod and stuffing box	Normal crane	MAN B&W Double-Jib Crane
A Minimum distance	B1 Minimum height from centre line crankshaft to centre line crane hook	B1 Minimum height from centre line crankshaft to underside deck beam	C Minimum height from centre line crankshaft to underside deck beam	D Additional height required for removal of exhaust valve without removing any exhaust valve stud
1,650	1,650	925	2.0	2x1.0

The crane hook travelling area must cover at least the full length of the engine and a width in accordance with dimension A given on the drawing, see cross-hatched area.

It is furthermore recommended that the engine room crane can be used for transport of heavy spare parts from the engine room hatch to the spare part stores and to the engine. See example on this drawing.

The crane hook should at least be able to reach down to a level corresponding to the centre line of the crankshaft.

For overhaul of the turbocharger(s), trolley mounted chain hoists must be installed on a separate crane beam or, alternatively, in combination with the engine room crane structure, see ‘Crane beam for overhaul of turbochargers’ with information about the required lifting capacity for overhaul of turbocharger(s).
Overhaul with MAN B&W Double-Jib crane

The Double-Jib crane is available from:

Danish Crane Building A/S
P.O. Box 54
Østerlandsvej 2
DK-9240 Nibe, Denmark
Telephone: + 45 98 35 31 33
Telefax: + 45 98 35 30 33
E-mail: dcb@dcb.dk

Fig. 5.04.02: Overhaul with Double-Jib crane
MAN B&W Double-Jib Crane

This crane is adapted to the special tool for low overhaul.

Dimensions are available on request.

Fig. 5.04.03: MAN B&W Double-Jib crane, option: 4 88 701
Engine Outline, Galleries and Pipe Connections

Engine Outline

The total length of the engine at the crankshaft level may vary depending on the equipment to be fitted on the fore end of the engine, such as adjustable counterweights, tuning wheel, moment compensators or PTO, which are shown as alternatives in Section 5.06.

Engine Masses and Centre of Gravity

The partial and total engine masses appear from section 19.04, ‘Dispatch Pattern’, to which the masses of water and oil in the engine, Section 5.08, are to be added. The centre of gravity is shown in Section 5.07, in both cases including the water and oil in the engine, but without moment compensators or PTO.

Gallery Outline

Section 5.06 show the gallery outline for engines rated at nominal MCR (L1).

Engine Pipe Connections

The positions of the external pipe connections on the engine are stated in Section 5.09, and the corresponding lists of counterflanges for pipes and turbocharger in Section 5.10.

The flange connection on the turbocharger gas outlet is rectangular, but a transition piece to a circular form can be supplied as an option: 4 60 601.
Engine and Gallery Outline

Fig. 5.06.01a: Engine outline, S50MC6 with turbocharger on aft end

<table>
<thead>
<tr>
<th>Cylinder</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3,560</td>
</tr>
<tr>
<td>6</td>
<td>4,450</td>
</tr>
<tr>
<td>7</td>
<td>5,340</td>
</tr>
<tr>
<td>8</td>
<td>6,230</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Types of fore end</th>
<th>Typical for cylinder no.</th>
<th>Space demand valid for</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>5-6-7-8</td>
<td>Basic design</td>
</tr>
<tr>
<td>II</td>
<td>5-6</td>
<td>Built on tuning wheel</td>
</tr>
<tr>
<td>III</td>
<td>5-6</td>
<td>Built on 2nd order moment compensator.</td>
</tr>
<tr>
<td>IV</td>
<td>5-6-7-8</td>
<td>Engine prepared for TCS/PTI, PTO/RCF, PTO/PTI, se also corresponding space requirements.</td>
</tr>
</tbody>
</table>

* Free space required for installation of equipment for measuring torsional and axial vibrations on engines without TCS or PTO. If the free space shown is not available, the shipyard should contact the engine supplier. On engines equipped with TCS or PTO, special measuring equipment is required.

Regarding pitch circle diameter, number and size of bolts for the intermediate shaft contact the engine builder.
Please note that the latest version of the dimensioned drawing is available for download at www.mandiesel.com under ‘Marine’ → ‘Low Speed’ → ‘Installation Drawings’. First choose engine series, then engine type and select ‘Outline drawing’ for the actual number of cylinders and type of turbocharger installation in the list of drawings available for download.

For platform dimensions, see ‘Gallery Outline’.

Fig. 5.06.01b: Engine outline, S50MC6 with turbocharger on aft end
Upper platform

![Diagram of upper platform with dimensions and annotations]

<table>
<thead>
<tr>
<th>T/C Type</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>h</th>
<th>k</th>
<th>l</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAN Diesel</td>
<td>TCA55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABB</td>
<td>TPL73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TPL77</td>
<td>2,302</td>
<td>6,497</td>
<td>460</td>
<td>3,586</td>
<td>3,660</td>
<td>2,290</td>
<td>2,175</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>TPL80</td>
<td>2,362</td>
<td>6,497</td>
<td>460</td>
<td>3,586</td>
<td>3,660</td>
<td>2,290</td>
<td>2,175</td>
<td>500</td>
</tr>
<tr>
<td>MHI</td>
<td>MET53MA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MET60MA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MET66MA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Available on request

<table>
<thead>
<tr>
<th>Cylinder</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3,560</td>
</tr>
<tr>
<td>6</td>
<td>4,450</td>
</tr>
<tr>
<td>7</td>
<td>5,340</td>
</tr>
<tr>
<td>8</td>
<td>6,230</td>
</tr>
</tbody>
</table>

Fig. 5.06.02a: Gallery outline, S50MC6 with turbocharger on aft end
Lower platform

If the engine 5-6 cylinder is prepared for 2nd order moment compensator on fore end the platform is to be increased as shown.

Steps between each cylinder

2 holes for piston overhauling

Please note that the latest version of the dimensioned drawing is available for download at www.mandiesel.com under ‘Marine’ → ‘Low Speed’ → ‘Installation Drawings’. First choose engine series, then engine type and select ‘Outline drawing’ for the actual number of cylinders and type of turbocharger installation in the list of drawings available for download.

Fig. 5.06.02b: Gallery outline, S50MC6 with turbocharger on aft end
Centre of Gravity

For engines with one turbocharger

<table>
<thead>
<tr>
<th>No. of cylinders</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance X mm</td>
<td>2,330</td>
<td>2,770</td>
<td>3,210</td>
<td>3,660</td>
</tr>
<tr>
<td>Distance Y mm</td>
<td>2,240</td>
<td>2,250</td>
<td>2,250</td>
<td>2,250</td>
</tr>
<tr>
<td>Distance Z mm</td>
<td>20</td>
<td>20</td>
<td>25</td>
<td>25</td>
</tr>
</tbody>
</table>

All dimensions and weights are approximate

Fig. 5.07a: Centre of gravity, turbocharger located on aft end of engine
For engines with one turbocharger

<table>
<thead>
<tr>
<th>No. of cylinders</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance X mm</td>
<td>2,100</td>
<td>2,470</td>
<td>2,890</td>
<td>3,380</td>
</tr>
<tr>
<td>Distance Y mm</td>
<td>2,230</td>
<td>2,240</td>
<td>2,340</td>
<td>2,430</td>
</tr>
<tr>
<td>Distance Z mm</td>
<td>140</td>
<td>160</td>
<td>150</td>
<td>150</td>
</tr>
</tbody>
</table>

All dimensions and weights are approximate

Fig. 5.07a: Centre of gravity, turbocharger located on exhaust side of engine, option 459 123
Mass of Water and Oil

<table>
<thead>
<tr>
<th>No. of cylinders</th>
<th>Mass of water in engine in service</th>
<th>Mass of oil</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jacket cooling water kg</td>
<td>Scavenge air cooling water kg</td>
<td>Total kg</td>
</tr>
<tr>
<td>5</td>
<td>340</td>
<td>280</td>
<td>620</td>
</tr>
<tr>
<td>6</td>
<td>405</td>
<td>340</td>
<td>745</td>
</tr>
<tr>
<td>7</td>
<td>470</td>
<td>390</td>
<td>860</td>
</tr>
<tr>
<td>8</td>
<td>535</td>
<td>430</td>
<td>965</td>
</tr>
</tbody>
</table>

Fig. 5.08.01: Water and oil in engine
Engine Pipe Connections

The letters refer to list of ‘Counterflanges’, Table 5.10.01

Fig. 5.09.01a: Engine pipe connections, S50MC with turbocharger on aft end
The letters refer to list of ‘Counterflanges’, Table 5.0.01

<table>
<thead>
<tr>
<th>T/C Type</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>m</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAN Diesel</td>
<td>TCA55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAN Diesel</td>
<td>TCA66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAN Diesel</td>
<td>TCA77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABB</td>
<td>TPL73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABB</td>
<td>TPL77</td>
<td>2,302</td>
<td>6,497</td>
<td>460</td>
<td>7,158</td>
<td>2,480</td>
<td>2,979</td>
<td>1,596</td>
</tr>
<tr>
<td>ABB</td>
<td>TPL80</td>
<td>2,362</td>
<td>6,497</td>
<td>460</td>
<td>7,264</td>
<td>2,568</td>
<td>3,269</td>
<td>1,647</td>
</tr>
<tr>
<td>MHI</td>
<td>MET53MA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MHI</td>
<td>MET60MA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MHI</td>
<td>MET66MA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Available on request

Fig. 5.09.01b: Engine pipe connections, S50MC with turbocharger on aft end
The letters refer to list of ‘Counterflanges’, Table 5.10.01

<table>
<thead>
<tr>
<th>Cyl.</th>
<th>g</th>
<th>h</th>
<th>k</th>
<th>l</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3,560</td>
<td>890</td>
<td>-</td>
<td>3,560</td>
</tr>
<tr>
<td>6</td>
<td>4,450</td>
<td>890</td>
<td>-</td>
<td>4,450</td>
</tr>
<tr>
<td>7</td>
<td>5,340</td>
<td>890</td>
<td>3,560</td>
<td>5,340</td>
</tr>
<tr>
<td>8</td>
<td>6,230</td>
<td>890</td>
<td>3,560</td>
<td>6,230</td>
</tr>
</tbody>
</table>

Please note that the latest version of the dimensioned drawing is available for download at www.mandiesel.com under ‘Marine’ → ‘Low Speed’ → ‘Installation Drawings’. First choose engine series, then engine type and select ‘Outline drawing’ for the actual number of cylinders and type of turbocharger installation in the list of drawings available for download.

For platform dimensions, see ‘Gallery Outline’.

Fig. 5.09.01c: Engine pipe connections, S50MC with turbocharger on aft end
Counterflanges

<table>
<thead>
<tr>
<th>Reference</th>
<th>Cyl. no.</th>
<th>Flange Diam.</th>
<th>PCD</th>
<th>Thckn.</th>
<th>Bolts Diam.</th>
<th>No.</th>
<th>DN *</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5-8</td>
<td>235</td>
<td>190</td>
<td>24</td>
<td>M20</td>
<td>8</td>
<td>100</td>
<td>Starting air inlet (Neck flange for welding supplied)</td>
</tr>
<tr>
<td>B</td>
<td>5-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Control air inlet</td>
</tr>
<tr>
<td>C</td>
<td>5-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Safety air inlet</td>
</tr>
<tr>
<td>D</td>
<td>5-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Exhaust gas outlet</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>TCA55</td>
<td>125</td>
<td>130</td>
<td>14</td>
<td>M12</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TCA66</td>
<td>180</td>
<td>145</td>
<td>18</td>
<td>M16</td>
<td>8</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TCA77</td>
<td>180</td>
<td>145</td>
<td>18</td>
<td>M16</td>
<td>8</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TPL73B</td>
<td>165</td>
<td>125</td>
<td>20</td>
<td>M16</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TPL77B</td>
<td>165</td>
<td>125</td>
<td>20</td>
<td>M16</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TPL80B</td>
<td>185</td>
<td>145</td>
<td>20</td>
<td>M16</td>
<td>8</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MET60MA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MET66MA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>5-8</td>
<td>150</td>
<td>110</td>
<td>16</td>
<td>M16</td>
<td>4</td>
<td>40</td>
<td>Fuel oil outlet (Neck flange for welding supplied)</td>
</tr>
<tr>
<td>K</td>
<td>5-6</td>
<td>200</td>
<td>160</td>
<td>20</td>
<td>M16</td>
<td>8</td>
<td>80</td>
<td>Fresh cooling water inlet</td>
</tr>
<tr>
<td>L</td>
<td>5-6</td>
<td>200</td>
<td>160</td>
<td>20</td>
<td>M16</td>
<td>8</td>
<td>100</td>
<td>Fresh cooling water outlet</td>
</tr>
<tr>
<td></td>
<td>7-8</td>
<td>220</td>
<td>180</td>
<td>20</td>
<td>M16</td>
<td>8</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>5-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Coupling for 30 mm pipe</td>
</tr>
<tr>
<td>N</td>
<td>5</td>
<td>250</td>
<td>210</td>
<td>26</td>
<td>M16</td>
<td>8</td>
<td>125</td>
<td>Sea cooling water inlet to air cooler</td>
</tr>
<tr>
<td></td>
<td>6-7</td>
<td>285</td>
<td>240</td>
<td>28</td>
<td>M20</td>
<td>8</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>5</td>
<td>250</td>
<td>210</td>
<td>26</td>
<td>M16</td>
<td>8</td>
<td>125</td>
<td>Sea cooling water outlet from air cooler</td>
</tr>
<tr>
<td></td>
<td>6-8</td>
<td>285</td>
<td>240</td>
<td>28</td>
<td>M20</td>
<td>8</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>RU</td>
<td>5-8</td>
<td>340</td>
<td>295</td>
<td>24</td>
<td>M20</td>
<td>8</td>
<td>200</td>
<td>System oil inlet</td>
</tr>
<tr>
<td>S</td>
<td>5-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>See special drawing of oil outlet</td>
</tr>
<tr>
<td>X</td>
<td>5-8</td>
<td>185</td>
<td>145</td>
<td>22</td>
<td>M22</td>
<td>8</td>
<td>65</td>
<td>Fuel oil inlet (Neck flange for welding supplied)</td>
</tr>
<tr>
<td>Y</td>
<td>5-8</td>
<td>150</td>
<td>110</td>
<td>16</td>
<td>M16</td>
<td>4</td>
<td>40</td>
<td>Lubricating oil inlet to camshaft</td>
</tr>
<tr>
<td>AB</td>
<td></td>
<td>TCA55</td>
<td>220</td>
<td>145</td>
<td>18</td>
<td>M16</td>
<td>4</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TCA66</td>
<td>200</td>
<td>160</td>
<td>20</td>
<td>M16</td>
<td>8</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TCA77</td>
<td>220</td>
<td>180</td>
<td>22</td>
<td>M16</td>
<td>8</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TPL73</td>
<td>185</td>
<td>145</td>
<td>18</td>
<td>M16</td>
<td>4</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TPL77</td>
<td>210</td>
<td>170</td>
<td>18</td>
<td>M16</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TPL80</td>
<td>210</td>
<td>170</td>
<td>18</td>
<td>M16</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MET56MA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MET60MA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MET66MA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>Cyl. no.</td>
<td>Flange</td>
<td>Bolts</td>
<td>DN *</td>
<td>Description</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>--------</td>
<td>-------</td>
<td>-------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC</td>
<td>5-8</td>
<td>Coupling for 30 mm pipe</td>
<td></td>
<td></td>
<td>Lubricating oil inlet to cylinder lubricators</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AD</td>
<td>5-8</td>
<td>115</td>
<td>85</td>
<td>14</td>
<td>M12 4 25 Fuel oil to cylinders from umbrella sealing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE</td>
<td>5-8</td>
<td>140</td>
<td>100</td>
<td>16</td>
<td>M16 4 32 Drain from bedplate / cleaning turbocharger</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AF</td>
<td>5-8</td>
<td>140</td>
<td>100</td>
<td>16</td>
<td>M16 4 32 Fuel oil to drain tank</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AG</td>
<td>5-8</td>
<td>140</td>
<td>100</td>
<td>16</td>
<td>M16 4 32 Drain oil from piston rod stuffing boxes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AH</td>
<td>5-8</td>
<td>Coupling for 30 mm pipe</td>
<td></td>
<td></td>
<td>Fresh cooling water drain (main engine)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AH1</td>
<td>5-8</td>
<td>Coupling for 30 mm pipe</td>
<td></td>
<td></td>
<td>Fresh cooling water drain (turbocharger exh. side)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AK</td>
<td>5-8</td>
<td>Coupling for 30 mm pipe</td>
<td></td>
<td></td>
<td>Inlet cleaning air cooler</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL</td>
<td>TC</td>
<td>5-8</td>
<td>140</td>
<td>100</td>
<td>16</td>
<td>M16 4 32 Outlet air cooler cleaning/water mist catcher</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM</td>
<td>5-8</td>
<td>Coupling for 30 mm pipe</td>
<td></td>
<td></td>
<td>Fresh cooling water drain (main engine)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM</td>
<td>TC</td>
<td>5-8</td>
<td>165</td>
<td>125</td>
<td>18</td>
<td>M16 4 50 Outlet air cooler cleaning/water mist catcher</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM</td>
<td>Exh.</td>
<td>5-8</td>
<td>165</td>
<td>125</td>
<td>18</td>
<td>M16 4 50 Outlet air cooler to chemical cleaning tank</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AN</td>
<td>5-8</td>
<td>Coupling for 30 mm pipe</td>
<td></td>
<td></td>
<td>Water inlet for cleaning of turbocharger</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP/TC</td>
<td>Aft.</td>
<td>5-8</td>
<td>Coupling for 12 mm pipe</td>
<td></td>
<td></td>
<td>Air inlet for dry cleaning of turbocharger</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP/TC</td>
<td>Exh.</td>
<td>5-8</td>
<td>Coupling for 30 mm pipe</td>
<td></td>
<td></td>
<td>Air inlet for dry cleaning of turbocharger</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AR</td>
<td>5-8</td>
<td>165</td>
<td>125</td>
<td>18</td>
<td>M16 4 50 Oil vapour discharge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AS</td>
<td>5-8</td>
<td>Coupling for 30 mm pipe</td>
<td></td>
<td></td>
<td>Cooling water drain air cooler</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT</td>
<td>5-8</td>
<td>150</td>
<td>110</td>
<td>18</td>
<td>M16 4 40 Extinguishing of fire in scavenger air box</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AV</td>
<td>5-8</td>
<td>185</td>
<td>145</td>
<td>18</td>
<td>M16 4 65 Drain from scavenger air box to closed drain tank</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>5-8</td>
<td>Coupling for 8 mm pipe</td>
<td></td>
<td></td>
<td>Terminal plate for remote instruments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BB</td>
<td>5-8</td>
<td>Coupling for 10 mm pipe</td>
<td></td>
<td></td>
<td>Terminal plate for manoeuvring system</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BD</td>
<td>5-8</td>
<td>Coupling for 16 mm pipe</td>
<td></td>
<td></td>
<td>Fresh water outlet for heating fuel oil drain pipes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BX</td>
<td>5-8</td>
<td>Coupling for 16 mm pipe</td>
<td></td>
<td></td>
<td>Steam inlet for heating fuel oil pipes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td>5-8</td>
<td>Coupling for 16 mm pipe</td>
<td></td>
<td></td>
<td>Steam outlet for heating fuel oil pipes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BV</td>
<td>5-8</td>
<td>Coupling for 16 mm pipe</td>
<td></td>
<td></td>
<td>Steam inlet for cleaning of drain scavenger air box</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* DN indicates the nominal diameter of the piping on the engine. For external pipes the diameters should be calculated according to the fluid velocities (see list of capacities) or the recommended pipe sizes in diagrams should be used.

Table 5.10.01: List of counterflanges, S50MC6 with turbocharger on aft end. Reference is made to section 5.09

Engine Pipe Connections.
Counterflanges, Connection D

MAN Diesel Type TCA/TCR

<table>
<thead>
<tr>
<th>T.C.</th>
<th>L</th>
<th>W</th>
<th>I L</th>
<th>I W</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>N</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCA55</td>
<td>1,206</td>
<td>516</td>
<td>1,080</td>
<td>390</td>
<td>1,143</td>
<td>360</td>
<td>1,000</td>
<td>472</td>
<td>1,155</td>
<td>120</td>
<td>125</td>
<td>26</td>
<td>ø18</td>
</tr>
<tr>
<td>TCA66</td>
<td>1,433</td>
<td>613</td>
<td>1,283</td>
<td>463</td>
<td>1,358</td>
<td>420</td>
<td>1,200</td>
<td>560</td>
<td>1,373</td>
<td>140</td>
<td>150</td>
<td>26</td>
<td>ø18</td>
</tr>
<tr>
<td>TCA77</td>
<td>1,694</td>
<td>720</td>
<td>1,524</td>
<td>550</td>
<td>1,612</td>
<td>480</td>
<td>1,280</td>
<td>664</td>
<td>1,628</td>
<td>160</td>
<td>160</td>
<td>34</td>
<td>ø22</td>
</tr>
<tr>
<td>TCA88</td>
<td>2,012</td>
<td>855</td>
<td>1,810</td>
<td>653</td>
<td>1,914</td>
<td>570</td>
<td>1,710</td>
<td>788</td>
<td>1,934</td>
<td>160</td>
<td>190</td>
<td>28</td>
<td>ø22</td>
</tr>
<tr>
<td>TCA99</td>
<td>2,207</td>
<td>938</td>
<td>1,985</td>
<td>717</td>
<td>2,100</td>
<td>624</td>
<td>1,872</td>
<td>866</td>
<td>2,120</td>
<td>208</td>
<td>208</td>
<td>28</td>
<td>ø22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T.C.</th>
<th>Dia 1</th>
<th>Dia 2</th>
<th>PCD</th>
<th>N</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCR18</td>
<td>425</td>
<td>310</td>
<td>395</td>
<td>12</td>
<td>ø22</td>
</tr>
<tr>
<td>TCR22</td>
<td>595</td>
<td>434</td>
<td>650</td>
<td>20</td>
<td>ø22</td>
</tr>
</tbody>
</table>
ABB Type TPL

Type TPL - Rectangular type

<table>
<thead>
<tr>
<th>T.C.</th>
<th>L</th>
<th>W</th>
<th>I L</th>
<th>I W</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>F</th>
<th>G</th>
<th>N</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPL73</td>
<td>1,168</td>
<td>550</td>
<td>984</td>
<td>381</td>
<td>1,092</td>
<td>324</td>
<td>972</td>
<td>492</td>
<td>108</td>
<td>108</td>
<td>28</td>
<td>ø26</td>
</tr>
<tr>
<td>TPL77</td>
<td>1,372</td>
<td>638</td>
<td>1,176</td>
<td>462</td>
<td>1,294</td>
<td>390</td>
<td>1,170</td>
<td>580</td>
<td>130</td>
<td>130</td>
<td>28</td>
<td>ø26</td>
</tr>
<tr>
<td>TPL80</td>
<td>1,580</td>
<td>729</td>
<td>1,364</td>
<td>538</td>
<td>1,494</td>
<td>450</td>
<td>1,350</td>
<td>668</td>
<td>150</td>
<td>150</td>
<td>28</td>
<td>ø30</td>
</tr>
<tr>
<td>TPL85</td>
<td>1,910</td>
<td>857</td>
<td>1,740</td>
<td>690</td>
<td>1,812</td>
<td>700</td>
<td>1,540</td>
<td>796</td>
<td>140</td>
<td>140</td>
<td>36</td>
<td>ø30</td>
</tr>
<tr>
<td>TPL91</td>
<td>2,226</td>
<td>958</td>
<td>2,006</td>
<td>770</td>
<td>2,134</td>
<td>625</td>
<td>1,875</td>
<td>896</td>
<td>125</td>
<td>125</td>
<td>48</td>
<td>ø22</td>
</tr>
</tbody>
</table>

Type TPL - Round type

<table>
<thead>
<tr>
<th>T.C.</th>
<th>Dia 1</th>
<th>Dia 2</th>
<th>PCD</th>
<th>N</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPL69</td>
<td>650</td>
<td>500</td>
<td>600</td>
<td>20</td>
<td>ø22</td>
</tr>
<tr>
<td>TPL65</td>
<td>540</td>
<td>400</td>
<td>495</td>
<td>16</td>
<td>ø22</td>
</tr>
</tbody>
</table>
Fig. 5.10.02: Turbocharger, exhaust outlet
Engine Seating and Holding Down Bolts

Please note that the latest version of the dimensioned drawing is available for download at www.mandiesel.com under ‘Marine’ → ‘Low-Speed’ → ‘MC Engine Programme’, choose engine type and click ‘Download installation Drawings for...’ the actual engine and turbocharger configuration. Select ‘Engine outline’ in the list of drawings available for download.

Engine Seating and Arrangement of Holding Down Bolts

The dimensions of the seating stated in Figs. 5.12.01 and 5.12.02 are for guidance only.

The engine is designed for mounting on epoxy chocks EoD No. 4 82 102 in which case the underside of the bedplate's lower flanges has no taper.

The epoxy types approved by MAN Diesel are:

- ‘Chockfast Orange PR 610 TCF from ITW Philadelphia Resins Corporation, USA’
- ‘Durasin’ from Daemmstoff Industrie Korea Ltd
- ‘Epocast 36’ from H.A. Springer - Kiel, Germany.
Epoxy Chocks Arrangement

For details of chocks and bolts see special drawings.

For securing of supporting chocks see special drawing.

This drawing may, subject to the written consent of the actual engine builder concerned, be used as a basis for marking-off and drilling the holes for holding down bolts in the top plates, provided that:

1) The engine builder drills the holes for holding down bolts in the bedplate while observing the tolerated locations indicated on MAN B&W drawings for machining the bedplate

2) The shipyard drills the holes for holding down bolts in the top plates while observing the tolerated locations given on the present drawing

3) The holding down bolts are made in accordance with MAN B&W drawings of these bolts.

Fig. 5.12.01: Arrangement of epoxy chocks and holding down bolts
Engine Seating Profile

Section A-A

This space to be kept free from pipes etc. along both sides of the engine in order to facilitate the overhaul work on holding down bolts, supporting chocks and side chocks.

Holding down bolts, option: 4 82 602 include:
1. Protecting cap
2. Spherical nut
3. Spherical washer
4. Distance pipe
5. Round nut
6. Holding down bolt

Fig. 5.12.02a: Profile of engine seating with vertical oil outlet
Section A-A

This space to be kept free from pipes etc. along both sides of the engine in order to facilitate the overhaul work on holding down bolts, supporting chocks and side chocks.

Holding down bolts, option: 482 602 include:
1. Protecting cap
2. Spherical nut
3. Spherical washer
4. Distance pipe
5. Round nut
6. Holding down bolt

Fig.5.12.02a: Profile of engine seating with horizontal oil outlet
Side chock brackets, option: 4 82 622 includes:
1. Side chock brackets

Side chock liners, option: 4 82 620 includes:
2. Liner for side chock
3. Lock plate
4. Washer
5. Hexagon socket set screw

End chock bolts, option: 4 82 610 includes:
1. Stud for end chock bolt
2. Round nut
3. Round nut
4. Spherical washer
5. Spherical washer
6. Protecting cap

End chock liner, option: 4 82 612 includes:
7. Liner for end chock

End chock brackets, option: 4 82 614 includes:
8. End chock bracket
Engine Top Bracing

The so-called guide force moments are caused by the transverse reaction forces acting on the crossheads due to the connecting rod and crankshaft mechanism. When the piston of a cylinder is not exactly in its top or bottom position the gas force from the combustion, transferred through the connecting rod, will have a component acting on the crosshead and the crankshaft perpendicularly to the axis of the cylinder. Its resultant is acting on the guide shoe and together they form a guide force moment.

The moments may excite engine vibrations moving the engine top athwart ships and causing a rocking (excited by H-moment) or twisting (excited by X-moment) movement of the engine. For engines with less than seven cylinders, this guide force moment tends to rock the engine in the transverse direction, and for engines with seven cylinders or more, it tends to twist the engine.

The guide force moments are harmless to the engine except when resonance vibrations occur in the engine/double bottom system. They may, however, cause annoying vibrations in the superstructure and/or engine room, if proper countermeasures are not taken.

As a detailed calculation of this system is normally not available, MAN Diesel recommends that top bracing is installed between the engine’s upper platform brackets and the casing side.

However, the top bracing is not needed in all cases. In some cases the vibration level is lower if the top bracing is not installed. This has normally to be checked by measurements, i.e. with and without top bracing.

If a vibration measurement in the first vessel of a series shows that the vibration level is acceptable without the top bracing, we have no objection to the top bracing being removed and the rest of the series produced without top bracing. It is our experience that especially the 7-cylinder engine will often have a lower vibration level without top bracing.

Without top bracing, the natural frequency of the vibrating system comprising engine, ship’s bottom, and ship’s side is often so low that resonance with the excitation source (the guide force moment) can occur close to the normal speed range, resulting in the risk of vibration.

With top bracing, such a resonance will occur above the normal speed range, as the natural frequencies of the double bottom/main engine system will increase. The impact of vibration is thus lowered.

The top bracing is normally installed on the exhaust side of the engine, but can alternatively be installed on the manoeuvring side. A combination of exhaust side and manoeuvring side installation is also possible.

The top bracing system is installed either as a mechanical top bracing or a hydraulic top bracing. Both systems are described below.

Mechanical top bracing

The mechanical top bracing comprises stiff connections between the engine and the hull.

The top bracing stiffener consists of a double bar tightened with friction shims at each end of the mounting positions. The friction shims allow the top bracing stiffener to move in case of displacements caused by thermal expansion of the engine or different loading conditions of the vessel. Furthermore, the tightening is made with a well-defined force on the friction shims, using disc springs, to prevent overloading of the system in case of an excessive vibration level.
The mechanical top bracing is to be made by the shipyard in accordance with MAN Diesel instructions.

Fig. 5.13.01: Mechanical top bracing stiffener. Option: 4 83 112

Hydraulic top bracing

The hydraulic top bracing is an alternative to the mechanical top bracing used mainly on engines with a cylinder bore of 50 or more. The installation normally features two, four or six independently working top bracing units.

The top bracing unit consists of a single-acting hydraulic cylinder with a hydraulic control unit and an accumulator mounted directly on the cylinder unit.

The top bracing is controlled by an automatic switch in a control panel, which activates the top bracing when the engine is running. It is possible to programme the switch to choose a certain rpm range, at which the top bracing is active. For service purposes, manual control from the control panel is also possible.

When active, the hydraulic cylinder provides a pressure on the engine in proportion to the vibration level. When the distance between the hull and engine increases, oil flows into the cylinder under pressure from the accumulator. When the distance decreases, a non-return valve prevents the oil from flowing back to the accumulator, and the pressure rises. If the pressure reaches a preset maximum value, a relief valve allows the oil to flow back to the accumulator, hereby maintaining the force on the engine below the specified value.

By a different pre-setting of the relief valve, the top bracing is delivered in a low-pressure version (26 bar) or a high-pressure version (40 bar).

The top bracing unit is designed to allow displacements between the hull and engine caused by thermal expansion of the engine or different loading conditions of the vessel.

Fig. 5.13.02: Outline of a hydraulic top bracing unit. The unit is installed with the oil accumulator pointing either up or down. Option: 4 83 123
Mechanical Top Bracing

Force per mechanical top bracing minimum horizontal rigidity at attachment to the hull.

Force per bracing: ±64 kN

Maximum horizontal deflection at the link’s points of attachment to the hull: 0.25 mm

Minimum horizontal rigidity in MN/m: 20 kN

\[a = 445 \]
\[b = 1,335 \]
\[c = 2,225 \]
\[d = 3,115 \]
\[e = 4,005 \]
\[f = 4,895 \]
\[g = 5,785 \]
\[h = 6,675 \]

Turbocharger

<table>
<thead>
<tr>
<th>Turbocharger</th>
<th>Q</th>
<th>R</th>
<th>U *)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCA55</td>
<td>3,427</td>
<td>4,197</td>
<td>4,150</td>
</tr>
<tr>
<td>TCA66</td>
<td>3,427</td>
<td>4,197</td>
<td>4,150</td>
</tr>
<tr>
<td>TCA77</td>
<td>Available on request</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPL73B</td>
<td>3,257</td>
<td>4,027</td>
<td>3,950</td>
</tr>
<tr>
<td>TPL77B</td>
<td>3,507</td>
<td>4,277</td>
<td>4,250</td>
</tr>
<tr>
<td>TPL80B</td>
<td>Available on request</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MET53MA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MET60MA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MET66MA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MET71MA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*) U: In case of all top bracings are attached at point P, the minimum attaching point 'R' could be reduced to 'U'.

Fig. 5.14.01: Mechanical top bracing arrangement, exhaust side
Fig. 5.14.01: Mechanical top bracing arrangement, aft end
Hydraulic Top Bracing Arrangement

Force per bracing ±81 kN
Maximum horizontal deflection at the link’s points of attachment to the hull for two cylinders 0.23 mm

Fig. 5.15.01: Hydraulic top bracing arrangement, exhaust side
Fig. 5.15.01: Hydraulic top bracing arrangement, aft end
Components for Engine Control System

This section is not applicable
Shaftline Earthing Device

Scope and field of application

A difference in the electrical potential between the hull and the propeller shaft will be generated due to the difference in materials and to the propeller being immersed in sea water.

In some cases, the difference in the electrical potential has caused spark erosion on the thrust, main bearings and journals of the crankshaft of the engine.

In order to reduce the electrical potential between the crankshaft and the hull and thus prevent spark erosion, a highly efficient shaftline earthing device must be installed.

The shaftline earthing device should be able to keep the electrical potential difference below 50 mV DC, and a shaft-to-hull monitoring equipment with an mV-meter and with an output signal to the alarm system must be installed so that the potential and thus the correct function of the shaftline earthing device can be monitored.

Note that only one shaftline earthing device is needed in the propeller shaft system.

Design description of the shaftline earthing device

The shaftline earthing device consists of two silver slip rings, two arrangements for holding brushes including connecting cables and monitoring equipment with an mV-meter and an output signal for alarm.

The slip rings should be made of solid silver or back-up rings of cobber with a silver layer all over. The expected life span of the silver layer on the slip rings should be minimum 5 years.

The brushes should be made of minimum 80% silver and 20% graphite to ensure a sufficiently electrical conducting capability.

Resistivity of the silver should be less than 0.1μ Ohm x m. The total resistance from the shaft to the hull must not exceed 0.005 Ohm. For a well-functioning shaftline earthing device, the resistance is expected to be approximately 0.001 Ohm.

Fig. 5.17.01
A cable with a cross section not less than 45 mm² is used for cabling the shaftline earthing device to the hull. The length of the cable to the hull should be as short as possible.

When the shaftline earthing device is working correctly, the electrical potential will normally be within the range of 10-50 mV DC. The alarm set-points should be 5 mV for a low alarm and 80 mV for a high alarm. The alarm signals with an alarm delay of 30 seconds and an alarm cut-off, when the engine is stopped, must be connected to the alarm system.

Connection of cables as shown on the sketch, Fig. 5.17.01.

Fig. 5.17.02: The shaftline earthing device slip rings must be fitted on the foremost intermediate shaft as close to the engine as possible
Fig. 5.17.03: When a generator is fitted, the shaftline earthing device must be placed between the generator and the engine.

 Suppliers

Supplier ref. no. 1386:

BAC Corrosion Control A/S
Faerovæj 7-9
DK-4681 Herfoelge, Denmark
Telephone: +45 70 26 89 00
Telefax: +45 70 26 97 00
Email: info@bacbera.dk
Website: www.bacbera.dk

Supplier ref. no. 1606:

M. G. Duff Marie Limited
1 Timberlaine Estate
Gravel Lane, Quarry Lane, Chichester
West Sussex, PO19 8PP, England
Telephone: +44 1243 533 336
Telefax: +44 1243 533 422
Email: sales@mgduff.co.uk
Website: www.mgduff.co.uk
MAN Diesel Controllable Pitch Propeller (CPP) and Remote Control

MAN Diesel Controllable Pitch Propeller

The standard propeller programme, Fig. 5.18.01 and 5.18.05 shows the VBS type features, propeller blade pitch setting by a hydraulic servo piston integrated in the propeller hub.

The figures stated after VBS indicate the propeller hub diameter, i.e. VBS1940 indicates the propeller hub diameter to be 1,940 mm.

Standard blade/hub materials are Ni-Al-bronze. Stainless steel is available as an option. The propellers are based on ‘no ice class’ but are available up to the highest ice classes.

Fig. 5.18.01: Controllable pitch propeller diameter (mm)
Data Sheet for Propeller

Identification: ______________________________

Fig. 5.18.02a: Dimension sketch for propeller design purposes

Type of vessel: ______________________________

For propeller design purposes please provide us with the following information:

1. S: ______________ mm
 W: ______________ mm
 I: ______________ mm (as shown above)

2. Stern tube and shafting arrangement layout

3. Propeller aperture drawing

4. Complete set of reports from model tank (resistance test, self-propulsion test and wake measurement). In case model test is not available the next page should be filled in.

5. Drawing of lines plan

6. Classification Society: __________
 Ice class notation: __________

7. Maximum rated power of shaft generator: kW

8. Optimisation condition for the propeller:
 To obtain the highest propeller efficiency please identify the most common service condition for the vessel.
 - Ship speed: ______________ kn
 - Engine service load: ______________ %
 - Service/sea margin: ______________ %
 - Shaft generator service load: ______________ kW
 - Draft: ______________ m

9. Comments:

Table 5.18.02b: Data sheet for propeller design purposes
Main Dimensions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Unit</th>
<th>Ballast</th>
<th>Loaded</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPP</td>
<td>m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LWL</td>
<td>m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TF</td>
<td>m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA</td>
<td>m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB</td>
<td>m3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CM</td>
<td>m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CWL</td>
<td>m2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>m2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCB</td>
<td>m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AB</td>
<td>m2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5.18.03: Data sheet for propeller design purposes, in case model test is not available this table should be filled in

Propeller Clearance

To reduce pressure impulses and vibrations emitted from the propeller to the hull, MAN Diesel recommend a minimum tip clearance as shown in Fig. 5.18.04.

For ships with slender aft body and favourable inflow conditions the lower values can be used, whereas full afterbody and large variations in wake field cause the upper values to be used.

In twin-screw ships the blade tip may protrude below the base line.

<table>
<thead>
<tr>
<th>Hub</th>
<th>Dismantling of cap X mm</th>
<th>High skew propeller Y mm</th>
<th>Non-skew propeller Y mm</th>
<th>Baseline clearance Z mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>VBS1280</td>
<td>390</td>
<td>15-20% of D</td>
<td>20-25% of D</td>
<td>Min. 50-100</td>
</tr>
<tr>
<td>VBS1380</td>
<td>420</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VBS1460</td>
<td>450</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VBS1560</td>
<td>480</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 5.18.04: Propeller clearance
Servo Oil System

The principle design of the servo oil system for VBS is shown in Fig. 5.18.05.

The VBS system consists of a servo oil tank unit, the Hydraulic Power Unit, and a coupling flange with electrical pitch feedback box and oil distributor ring.

The electrical pitch feedback box continuously measures the position of the pitch feedback ring and compares this signal with the pitch order signal. If deviation occurs, a proportional valve is actuated.

Hereby high pressure oil is fed to one or the other side of the servo piston, via the oil distributor ring, until the desired propeller pitch has been reached. The pitch setting is normally remote controlled, but local emergency control is possible.
Fig. 5.18.06: Hydraulic Power Unit – Servo oil tank unit

Hydraulic Power Unit

The servo oil tank unit, the Hydraulic Power Unit Fig. 5.18.06, consists of an oil tank with all other components top mounted, to facilitate installation at yard.

Two electrically driven pumps draw oil from the oil tank through a suction filter and deliver high pressure oil to the proportional valve.

One of two pumps are in service during normal operation, while the second will start up at powerful manoeuvring.

A servo oil pressure adjusting valve ensures minimum servo oil pressure at any time hereby minimizing the electrical power consumption.

Maximum system pressure is set on the safety valve.

The return oil is led back to the tank via a thermostatic valve, cooler and paper filter.

The servo oil unit is equipped with alarms according to the Classification Society as well as necessary pressure and temperature indicators.

If the servo oil unit cannot be located with maximum oil level below the oil distribution ring, the system must incorporate an extra, small drain tank complete with pump, located at a suitable level, below the oil distributor ring drain lines.
Remote Control System

The Alphatronic 2000 remote control system is designed for control of propulsion plants based on diesel engines with CP propellers. The plant configuration could for instance include tunnel gear with PTO/PTI, PTO gear, multiple engines on one gearbox as well as multiple propeller plants.

As shown on fig. 5.18.07, the propulsion remote control system comprises a computer controlled system with interconnections between control stations via a redundant bus and a hard wired back-up control system for direct pitch control at constant shaft speed.

The computer controlled system contains functions for:

- Machinery control of engine start/stop, engine load limits and possible gear clutches.
- Thrust control with optimization of propeller pitch and shaft speed. Selection of combinator, constant speed or separate thrust mode is possible. The rates of changes are controlled to ensure smooth manoeuvres and avoidance of propeller cavitation.
- A Load control function protects the engine against overload. The load control function contains a scavenge air smoke limiter, a load programme for avoidance of high thermal stresses in the engine, an automatic load reduction and an engineer controlled limitation of maximum load.
- Functions for transfer of responsibility between the local control stand, engine control room and control locations on the bridge are incorporated in the system.
Propulsion Control Station on the Main Bridge

For remote control, a minimum of one control station located on the bridge is required.

This control station will incorporate three modules, as shown on fig. 5.18.08:

- **Propulsion control panel** with push buttons and indicators for machinery control and a display with information of condition of operation and status of system parameter.

- **Propeller monitoring panel** with back-up instruments for propeller pitch and shaft speed.

- **Thrust control panel** with control lever for thrust control, an emergency stop button and push buttons for transfer of control between control stations on the bridge.
Renk KAZ Clutch for Auxiliary Propulsion Systems

The Renk KAZ Clutch is a shaftline de-clutching device for auxiliary propulsion systems which meets the class notations for redundant propulsion.

The Renk KAZ clutch facilitates reliable and simple ‘take home’ and ‘take away’ functions in two-stroke engine plants. It is described in Section 4.04.

Further information

For further information about the MAN Diesel Controllable Pitch Propeller (CPP) and the Alphatronic 2000 Remote Control System, please refer to our publications:

CP Propeller – Product Information

Alphatronic 2000 PCS Remote Control System

The publications are available at www.mandiesel.com under ‘Quicklinks’ → ‘Technical Papers’
List of Capacities:
Pumps, Coolers &
Exhaust Gas
Calculation of List of Capacities and Exhaust Gas Data

This chapter describes the necessary auxiliary machinery capacities to be used for a nominally rated engine. The capacities given are valid for seawater cooling system and central cooling water system, respectively. For derated engine, i.e. with a specified MCR and/or optimising point different from the nominally rated MCR point, the list of capacities will be different from the nominal capacities.

Furthermore, among others, the exhaust gas data depends on the ambient temperature conditions. Based on examples for a derated engine, the way of how to calculate the derated capacities, freshwater production and exhaust gas amounts and temperatures will be described in details.

Nomenclature

In the following description and examples of the auxiliary machinery capacities, freshwater generator pro-

<table>
<thead>
<tr>
<th>Engine ratings</th>
<th>Point / Index</th>
<th>Power</th>
<th>Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal MCR point</td>
<td>L_1</td>
<td>P_{L_1}</td>
<td>n_{L_1}</td>
</tr>
<tr>
<td>Specified MCR point</td>
<td>M</td>
<td>P_{M}</td>
<td>n_{M}</td>
</tr>
<tr>
<td>Optimising point</td>
<td>O</td>
<td>P_{O}</td>
<td>n_{O}</td>
</tr>
<tr>
<td>Service point</td>
<td>S</td>
<td>P_{S}</td>
<td>n_{S}</td>
</tr>
</tbody>
</table>

Parameters

<table>
<thead>
<tr>
<th>Q = Heat dissipation</th>
<th>Cooler index</th>
<th>Flow index</th>
</tr>
</thead>
<tbody>
<tr>
<td>V = Volume flow</td>
<td>air scavenge air cooler</td>
<td>sw seawater flow</td>
</tr>
<tr>
<td>M = Mass flow</td>
<td>lub lube oil cooler</td>
<td>cw cooling/central water flow</td>
</tr>
<tr>
<td>T = Temperature</td>
<td>jw jacket water cooler</td>
<td>exh exhaust gas</td>
</tr>
<tr>
<td></td>
<td>cent central cooler</td>
<td>fw freshwater</td>
</tr>
</tbody>
</table>

Fig. 6.01.02: Nomenclature of coolers and volume flows, etc.

Engine configurations related to SFOC

The engine type is available in the following two versions with respect to the efficiency of the turbocharger:

- A) With high efficiency turbocharger:
 which is the basic design and for which the lists of capacities Section 6.03 are calculated.

- B) With conventional turbocharger:
 Which is an optional design (EoD No. 459107) if a higher exhaust gas temperature is required for the exhaust gas boiler. This modification will lead to a 7-8% reduction in the exhaust gas amount and a temperature increase of about 20°C. The SFOC penalty will be 2 g/kWh. The corresponding lists of capacities are shown in Section 6.03.
List of Capacities and Cooling Water Systems

The List of Capacities contain data regarding the necessary capacities of the auxiliary machinery for the main engine only, and refer to a nominally rated engine. Complying with IMO Tier I NOₓ limitations.

The heat dissipation figures include 10% extra margin for overload running except for the scavenger air cooler, which is an integrated part of the diesel engine.

Cooling Water Systems

The capacities given in the tables are based on tropical ambient reference conditions and refer to engines with high efficiency/conventional turbocharger running at nominal MCR (Lₜ) for:

- **Seawater cooling system**,
 See diagram, Fig. 6.02.01 and nominal capacities in Fig. 6.03.01

- **Central cooling water system**,
 See diagram, Fig. 6.02.02 and nominal capacities in Fig. 6.03.01

The capacities for the starting air receivers and the compressors are stated in Fig. 6.03.01.

Heat radiation and air consumption

The radiation and convection heat losses to the engine room is around 1% of the engine nominal power (kW in Lₜ).

The air consumption is approximately 98.2% of the calculated exhaust gas amount, ie. \(M_{\text{air}} = M_{\text{exh}} \times 0.982 \).

Flanges on engine, etc.

The location of the flanges on the engine are shown in ‘Engine pipe connections’, and the flanges are identified by reference letters stated in the ‘List of flanges’; both can be found in Chapter 5.

The diagrams use the ‘Basic symbols for piping’, whereas the symbols for instrumentation according to ‘ISO 1219-1’ and ‘ISO 1219-2’ and the instrumentation list found in Appendix A.
List of Capacities for 5S50MC6 at NMCR - IMO NO\textsubscript{x} Tier I compliance

<table>
<thead>
<tr>
<th>Pumps</th>
<th>Conventional TC</th>
<th>High eff. TC</th>
<th>Conventional TC</th>
<th>High eff. TC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 x TDA65-20</td>
<td>1 x TPL73-B12</td>
<td>1 x TDA65-20</td>
<td>1 x TPL73-B12</td>
</tr>
<tr>
<td>Fuel oil circulation m³/h</td>
<td>4.4</td>
<td>4.4</td>
<td>4.4</td>
<td>4.4</td>
</tr>
<tr>
<td>Fuel oil supply m³/h</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>Jacket cooling m³/h</td>
<td>55.0</td>
<td>55.0</td>
<td>55.0</td>
<td>55.0</td>
</tr>
<tr>
<td>Seawater cooling * m³/h</td>
<td>210.0</td>
<td>210.0</td>
<td>210.0</td>
<td>210.0</td>
</tr>
<tr>
<td>Main lubrication oil * m³/h</td>
<td>155.0</td>
<td>155.0</td>
<td>155.0</td>
<td>155.0</td>
</tr>
<tr>
<td>Central cooling * m³/h</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Scavenge air cooler(s)				
	Conventional TC	High eff. TC	Conventional TC	High eff. TC
Heat diss. app. kW	2,670	2,670	2,800	2,800
Central water flow m³/h	130	130	165	165

Lubricating oil cooler				
	Conventional TC	High eff. TC	Conventional TC	High eff. TC
Heat diss. app. kW	590	590	590	590
Lube oil flow * m³/h	155.0	155.0	155.0	155.0
Central water flow m³/h	-	-	-	-
Seawater flow m³/h	80	80	80	80

Jacket water cooler				
	Conventional TC	High eff. TC	Conventional TC	High eff. TC
Heat diss. app. kW	1,050	1,050	1,050	1,050
Jacket water flow m³/h	55	55	55	55
Central water flow m³/h	-	-	-	-
Seawater flow m³/h	80	80	80	80

Central cooler				
	Conventional TC	High eff. TC	Conventional TC	High eff. TC
Heat diss. app. * kW	-	-	-	-
Central water flow m³/h	-	-	-	-
Seawater flow m³/h	-	-	-	-

Starting air system, 30.0 bar g 12 starts. Fixed pitch propeller - reversible engine				
Receiver volume m³	2 x 4.0	2 x 4.0	2 x 4.0	2 x 4.0
Compressor cap. m³	240	240	240	240

Starting air system, 30.0 bar g 6 starts. Controllable pitch propeller - non-reversible engine				
Receiver volume m³	2 x 2.5	2 x 2.5	2 x 2.5	2 x 2.5
Compressor cap. m³	150	150	150	150

Other values				
Fuel oil heater kW	115	115	115	115
Exh. gas temp. °C	265	265	265	265
Exh. gas amount kg/h	62,000	62,000	67,000	67,000
Air consumption kg/h	16.9	16.9	16.9	16.9

* For main engine arrangements with built-on power take-off (PTO) of a MAN Diesel recommended type and/or torsional vibration damper the engine’s capacities must be increased by those stated for the actual system

For List of Capacities for derated engines and performance data at part load please visit http://www.manbw.dk/ceas/erd/

Table 6.03.01e: Capacities for seawater and central systems as well as conventional and high efficiency turbochargers stated at NMCR
List of Capacities for 6S50MC6 at NMCR - IMO NOX Tier I compliance

<table>
<thead>
<tr>
<th></th>
<th>Seawater cooling</th>
<th>Central cooling</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Conventional TC</td>
<td>High eff. TC</td>
</tr>
<tr>
<td></td>
<td>1 x TD46-20</td>
<td>1 x TGL3812 CL</td>
</tr>
<tr>
<td>Pumps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel oil circulation m³/h</td>
<td>5.3 5.3 5.3 5.3 5.3</td>
<td>5.3 5.3 5.3 5.3 5.3</td>
</tr>
<tr>
<td>Fuel oil supply m³/h</td>
<td>2.2 2.2 2.2 2.2 2.2</td>
<td>2.2 2.2 2.2 2.2 2.2</td>
</tr>
<tr>
<td>Jacket cooling m³/h</td>
<td>66.0 66.0 66.0 66.0 66.0</td>
<td>66.0 66.0 66.0 66.0 66.0</td>
</tr>
<tr>
<td>Seawater cooling * m³/h</td>
<td>255.0 250.0 250.0 290.0 295.0 290.0</td>
<td>255.0 250.0 250.0 260.0 260.0 260.0</td>
</tr>
<tr>
<td>Main lubrication oil * m³/h</td>
<td>190.0 185.0 185.0 190.0 190.0 190.0</td>
<td>190.0 185.0 185.0 190.0 190.0 190.0</td>
</tr>
<tr>
<td>Central cooling * m³/h</td>
<td>- - - - - -</td>
<td>215 215 215 220 220 220</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scavenge air cooler(s)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Central water flow m³/h</td>
<td>- - - - - -</td>
<td>120 120 120 125 125 125</td>
</tr>
<tr>
<td>Seawater flow m³/h</td>
<td>156 156 156 195 195</td>
<td>- - - - - -</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lubricating oil cooler</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat diss. app. * kW</td>
<td>710 690 680 710 720 690</td>
<td>710 690 680 710 720 690</td>
</tr>
<tr>
<td>Lube oil flow * m³/h</td>
<td>190.0 185.0 185.0 190.0 190.0 190.0</td>
<td>190.0 185.0 185.0 190.0 190.0 190.0</td>
</tr>
<tr>
<td>Central water flow m³/h</td>
<td>- - - - - -</td>
<td>95 95 95 95 95 95</td>
</tr>
<tr>
<td>Seawater flow m³/h</td>
<td>99 94 94 95 100 95</td>
<td>- - - - - -</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Jacket water cooler</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat diss. app. kW</td>
<td>1,250 1,250 1,250 1,250 1,250</td>
<td>1,250 1,250 1,250 1,250 1,250</td>
</tr>
<tr>
<td>Jacket water flow m³/h</td>
<td>66 66 66 66 66 66</td>
<td>66 66 66 66 66 66</td>
</tr>
<tr>
<td>Central water flow m³/h</td>
<td>- - - - - -</td>
<td>95 95 95 95 95 95</td>
</tr>
<tr>
<td>Seawater flow m³/h</td>
<td>99 94 94 95 100 95</td>
<td>- - - - - -</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Central cooler</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat diss. app. * kW</td>
<td>- - - - - -</td>
<td>5,140 5,120 5,110 5,300 5,310 5,280</td>
</tr>
<tr>
<td>Central water flow m³/h</td>
<td>- - - - - -</td>
<td>215 215 215 220 220 220</td>
</tr>
<tr>
<td>Seawater flow m³/h</td>
<td>- - - - - -</td>
<td>255 250 250 260 260 260</td>
</tr>
</tbody>
</table>

Starting air system, 30.0 bar a:

<table>
<thead>
<tr>
<th>12 starts. Fixed pitch propeller - reversible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receiver volume m³</td>
</tr>
<tr>
<td>Compressor cap. m³</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6 starts. Controllable pitch propeller - non-reversible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receiver volume m³</td>
</tr>
<tr>
<td>Compressor cap. m³</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other values</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel oil heater kW</td>
<td>140 140 140 140 140</td>
<td>140 140 140 140 140</td>
</tr>
<tr>
<td>Exh. gas temp. °C</td>
<td>265 265 265 265 245 245</td>
<td>265 265 265 265 245 245</td>
</tr>
<tr>
<td>Exh. gas amount kg/h</td>
<td>74,400 74,400 74,400 80,400 80,400 80,400</td>
<td>74,400 74,400 74,400 80,400 80,400 80,400</td>
</tr>
<tr>
<td>Air consumption kg/h</td>
<td>20.3 20.3 20.3 21.9 21.9 21.9</td>
<td>20.3 20.3 20.3 21.9 21.9 21.9</td>
</tr>
</tbody>
</table>

* For main engine arrangements with built-on power take-off (PTO) of a MAN Diesel recommended type and/or torsional vibration damper the engine’s capacities must be increased by those stated for the actual system.

For List of Capacities for derated engines and performance data at part load please visit http://www.manbw.dk/ceas/erd/

Table 6.03.01f: Capacities for seawater and central systems as well as conventional and high efficiency turbochargers stated at NMCR
List of Capacities for 7S50MC6 at NMCR - IMO NOₓ Tier I compliance

Seawater cooling

<table>
<thead>
<tr>
<th></th>
<th>Conventional TC</th>
<th>High eff. TC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 x TD66-20</td>
<td>1 x TPL71-B12</td>
</tr>
<tr>
<td>Pumps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel oil circulation m³/h</td>
<td>6.2</td>
<td>6.2</td>
</tr>
<tr>
<td>Fuel oil supply</td>
<td>2.6</td>
<td>2.6</td>
</tr>
<tr>
<td>Jacket cooling</td>
<td>77.0</td>
<td>77.0</td>
</tr>
<tr>
<td>Seawater cooling</td>
<td>295.0</td>
<td>295.0</td>
</tr>
<tr>
<td>Main lubrication oil</td>
<td>220.0</td>
<td>220.0</td>
</tr>
<tr>
<td>Central cooling</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Central cooling

<table>
<thead>
<tr>
<th></th>
<th>Conventional TC</th>
<th>High eff. TC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 x TD66-20</td>
<td>1 x TPL71-B12</td>
</tr>
<tr>
<td>Scavenge air cooler(s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat diss. app.</td>
<td>3,730</td>
<td>3,730</td>
</tr>
<tr>
<td>Central water flow</td>
<td>182</td>
<td>182</td>
</tr>
<tr>
<td>Seawater flow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lubricating oil cooler</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat diss. app.</td>
<td>810</td>
<td>820</td>
</tr>
<tr>
<td>Lube oil flow</td>
<td>220.0</td>
<td>220.0</td>
</tr>
<tr>
<td>Central water flow</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Seawater flow</td>
<td>113</td>
<td>113</td>
</tr>
<tr>
<td>Jacket water cooler</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat diss. app.</td>
<td>1,460</td>
<td>1,460</td>
</tr>
<tr>
<td>Jacket water flow</td>
<td>77</td>
<td>77</td>
</tr>
<tr>
<td>Central water flow</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Seawater flow</td>
<td>113</td>
<td>113</td>
</tr>
<tr>
<td>Central cooler</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat diss. app.</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Central water flow</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Seawater flow</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Starting air system, 30.0 bar g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 starts. Fixed pitch propeller - reversible engine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Receiver volume</td>
<td>2 x 2.5</td>
<td>2 x 2.5</td>
</tr>
<tr>
<td>Compressor cap.</td>
<td>270</td>
<td>270</td>
</tr>
<tr>
<td>Starting air system, 30.0 bar g, 6 starts. Controllable pitch propeller - non-reversible engine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Receiver volume</td>
<td>2 x 2.5</td>
<td>2 x 2.5</td>
</tr>
<tr>
<td>Compressor cap.</td>
<td>150</td>
<td>150</td>
</tr>
</tbody>
</table>

Other values

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel oil heater kW</td>
<td>165</td>
<td>165</td>
<td>165</td>
<td>165</td>
<td>165</td>
<td>165</td>
<td>165</td>
<td>165</td>
<td>165</td>
</tr>
<tr>
<td>Exh. gas temp. °C</td>
<td>265</td>
<td>265</td>
<td>265</td>
<td>245</td>
<td>245</td>
<td>245</td>
<td>265</td>
<td>265</td>
<td>265</td>
</tr>
<tr>
<td>Exh. gas amount kg/h</td>
<td>86,800</td>
<td>86,800</td>
<td>86,800</td>
<td>93,800</td>
<td>93,800</td>
<td>93,800</td>
<td>86,800</td>
<td>86,800</td>
<td>86,800</td>
</tr>
<tr>
<td>Air consumption kg/h</td>
<td>23.6</td>
<td>23.6</td>
<td>23.6</td>
<td>25.6</td>
<td>25.6</td>
<td>25.6</td>
<td>23.6</td>
<td>23.6</td>
<td>23.6</td>
</tr>
</tbody>
</table>

* For main engine arrangements with built-on power take-off (PTO) of a MAN Diesel recommended type and/or torsional vibration damper the engine’s capacities must be increased by those stated for the actual system

For List of Capacities for derated engines and performance data at part load please visit http://www.manbwr.com/ceas/erd/

Table 6.03.01g: Capacities for seawater and central systems as well as conventional and high efficiency turbochargers stated at NMCR
List of Capacities for 8S50MC6 at NMCR - IMO NO\textsubscript{x} Tier I compliance

<table>
<thead>
<tr>
<th>Pumps</th>
<th>Seawater cooling</th>
<th>Central cooling</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Conventional TC</td>
<td>High eff. TC</td>
</tr>
<tr>
<td></td>
<td>1 x TCA66-20</td>
<td>1 x TPL71-812</td>
</tr>
<tr>
<td>Fuel oil circulation m/h</td>
<td>7.1</td>
<td>7.1</td>
</tr>
<tr>
<td>Fuel oil supply m/h</td>
<td>2.9</td>
<td>2.9</td>
</tr>
<tr>
<td>Jacket cooling m/h</td>
<td>87.0</td>
<td>87.0</td>
</tr>
<tr>
<td>Seawater cooling * m/h</td>
<td>335.0</td>
<td>335.0</td>
</tr>
<tr>
<td>Main lubrication oil * m/h</td>
<td>250.0</td>
<td>250.0</td>
</tr>
<tr>
<td>Central cooling * m/h</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scavenge air cooler(s)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat diss. app. kW</td>
<td>4,270</td>
<td>4,270</td>
<td>4,480</td>
<td>4,480</td>
<td>4,480</td>
<td>4,420</td>
<td>4,240</td>
<td>4,240</td>
</tr>
<tr>
<td>Central water flow m/h</td>
<td>208</td>
<td>208</td>
<td>208</td>
<td>260</td>
<td>260</td>
<td>160</td>
<td>160</td>
<td>160</td>
</tr>
<tr>
<td>Seawater flow m/h</td>
<td>208</td>
<td>208</td>
<td>208</td>
<td>260</td>
<td>260</td>
<td>160</td>
<td>160</td>
<td>160</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lubricating oil cooler</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat diss. app. * kW</td>
<td>910</td>
<td>920</td>
<td>890</td>
<td>890</td>
<td>930</td>
<td>920</td>
<td>920</td>
<td>920</td>
</tr>
<tr>
<td>Lube oil flow * m/h</td>
<td>250.0</td>
<td>250.0</td>
<td>250.0</td>
<td>250.0</td>
<td>250.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central water flow m/h</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Seawater flow m/h</td>
<td>127</td>
<td>127</td>
<td>127</td>
<td>130</td>
<td>130</td>
<td>125</td>
<td>125</td>
<td>125</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Jacket water cooler</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat diss. app. kW</td>
<td>1,670</td>
<td>1,670</td>
<td>1,670</td>
<td>1,670</td>
<td>1,670</td>
<td>1,670</td>
<td>1,670</td>
<td>1,670</td>
</tr>
<tr>
<td>Jacket water flow m/h</td>
<td>87</td>
<td>87</td>
<td>87</td>
<td>87</td>
<td>87</td>
<td>87</td>
<td>87</td>
<td>87</td>
</tr>
<tr>
<td>Central water flow m/h</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Seawater flow m/h</td>
<td>127</td>
<td>127</td>
<td>127</td>
<td>130</td>
<td>130</td>
<td>125</td>
<td>125</td>
<td>125</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Central cooler</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat diss. app. * kW</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6,820</td>
<td>6,830</td>
<td>6,800</td>
</tr>
<tr>
<td>Central water flow m/h</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>285</td>
<td>285</td>
<td>285</td>
</tr>
<tr>
<td>Seawater flow m/h</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>335</td>
<td>335</td>
<td>335</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Starting air system, 30.0 bar g 12 starts. Fixed pitch propeller - reversible engine</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Receiver volume m³</td>
<td>2 x 4.5</td>
</tr>
<tr>
<td>Compressor cap. m³</td>
<td>270</td>
<td>270</td>
<td>270</td>
<td>270</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Starting air system, 30.0 bar g 6 starts. Controllable pitch propeller - non-reversible engine</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Receiver volume m³</td>
<td>2 x 2.5</td>
</tr>
<tr>
<td>Compressor cap. m³</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other values</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel oil heater kW</td>
<td>185</td>
<td>185</td>
<td>185</td>
<td>185</td>
<td>185</td>
<td>185</td>
<td>185</td>
<td>185</td>
</tr>
<tr>
<td>Exh. gas temp. °C</td>
<td>265</td>
<td>265</td>
<td>265</td>
<td>245</td>
<td>245</td>
<td>245</td>
<td>245</td>
<td>245</td>
</tr>
<tr>
<td>Exh. gas amount kg/h</td>
<td>99,200</td>
<td>99,200</td>
<td>99,200</td>
<td>107,200</td>
<td>107,200</td>
<td>107,200</td>
<td>107,200</td>
<td>107,200</td>
</tr>
<tr>
<td>Air consumption kg/h</td>
<td>27.0</td>
<td>27.0</td>
<td>27.0</td>
<td>29.2</td>
<td>29.2</td>
<td>29.2</td>
<td>29.2</td>
<td>29.2</td>
</tr>
</tbody>
</table>

* For main engine arrangements with built-on power take-off (PTO) of a MAN Diesel recommended type and/or torsional vibration damper the engine’s capacities must be increased by those stated for the actual system

For List of Capacities for derated engines and performance data at part load please visit http://www.manbw.dk/ceas/erd/

Table 6.03.01h: Capacities for seawater and central systems as well as conventional and high efficiency turbochargers stated at NMCR
Auxiliary Machinery Capacities

The dimensioning of heat exchangers (coolers) and pumps for derated engines can be calculated on the basis of the heat dissipation values found by using the following description and diagrams. Those for the nominal MCR (L1), may also be used if wanted.

The nomenclature of the basic engine ratings and coolers, etc. used in this section is shown in Fig. 6.01.01 and 6.01.02.

Cooler heat dissipations

For the specified MCR (M) the following three diagrams in Figs. 6.04.01, 6.04.02 and 6.04.03 show reduction factors for the corresponding heat dissipations for the coolers, relative to the values stated in the ‘List of Capacities’ valid for nominal MCR (L1).

The percentage power (P_M%) and speed (n_M%) of L1:
\[P_{M\%} = P_L / P_{L1} \times 100\% \]
\[n_{M\%} = n_L / n_{L1} \times 100\% \]

for specified MCR (M) of the derated engine is used as input in the above-mentioned diagrams, giving the % heat dissipation figures relative to those in the ‘List of Capacities’.

\[Q_{\text{air\%}} = 100 \times \left(\frac{P_{M\%}}{P_{L1}} \right)^{1.68} \times \left(\frac{n_{M\%}}{n_{L1}} \right)^{-0.83} \times k_{O} \]

\[k_{O} = 1 + 0.27 \times \left(1 - \frac{P_{O}}{P_{M\%}} \right) \]

Fig. 6.04.01: Scavenged air cooler, heat dissipation Q_{\text{air\%}} in point M, in % of the L1 value Q_{\text{air, L1}} and valid for P_{O} = P_{M\%}.

If optimising point O lower than M, an extra correction k_{O} is used.

\[Q_{\text{jw\%}} = 67.3009 \times \ln \left(\frac{n_{M\%}}{n_{L1}} \right) + 7.6304 \times \ln \left(\frac{P_{M\%}}{P_{L1}} \right) - 245.074 \]

Fig. 6.04.02: Jacket water cooler, heat dissipation Q_{\text{jw\%}} in point M, in % of the L1 value Q_{\text{jw, L1}}.

\[Q_{\text{lub\%}} = 67.3009 \times \ln \left(\frac{n_{M\%}}{n_{L1}} \right) + 7.6304 \times \ln \left(\frac{P_{M\%}}{P_{L1}} \right) - 245.074 \]

Fig. 6.04.03: Lubricating oil cooler, heat dissipation Q_{\text{lub\%}} in point M, in % of the L1 value Q_{\text{lub, L1}}.
The derated cooler capacities may then be found by means of following equations:

\[Q_{\text{air}, M} = Q_{\text{air}, L_1} \times \left(\frac{Q_{\text{air}}\%}{100} \right) \]
\[Q_{\text{jw}, M} = Q_{\text{jw}, L_1} \times \left(\frac{Q_{\text{jw}}\%}{100} \right) \]
\[Q_{\text{lub}, M} = Q_{\text{lub}, L_1} \times \left(\frac{Q_{\text{lub}}\%}{100} \right) \]

and for a central cooling water system the central cooler heat dissipation is:

\[Q_{\text{cent}, M} = Q_{\text{air}, M} + Q_{\text{jw}, M} + Q_{\text{lub}, M} \]

Pump capacities

The pump capacities given in the ‘List of Capacities’ refer to engines rated at nominal MCR (L1). For lower rated engines, only a marginal saving in the pump capacities is obtainable.

To ensure proper lubrication, the lubricating oil pump must remain unchanged.

Also, the fuel oil circulating and supply pumps should remain unchanged.

In order to ensure reliable starting, the starting air compressors and the starting air receivers must also remain unchanged.

The jacket cooling water pump capacity is relatively low. Practically no saving is possible, and it is therefore unchanged.

Seawater cooling system

The derated seawater pump capacity is equal to the sum of the below found derated seawater flow capacities through the scavenger air and lube oil coolers, as these are connected in parallel.

The seawater flow capacity for each of the scavenger air, lube oil and jacket water coolers can be reduced proportionally to the reduced heat dissipations found in Figs. 6.04.01, 6.04.02 and 6.04.03, respectively i.e. as follows:

\[V_{\text{sw,air}, M} = V_{\text{sw,air}, L_1} \times \left(\frac{Q_{\text{air}}\%}{100} \right) \]
\[V_{\text{sw,lub}, M} = V_{\text{sw,lub}, L_1} \times \left(\frac{Q_{\text{lub}}\%}{100} \right) \]
\[V_{\text{sw,jw}, M} = V_{\text{sw,jw}, L_1} \times \left(\frac{Q_{\text{jw}}\%}{100} \right) \]

However, regarding the scavenger air cooler(s), the engine maker has to approve this reduction in order to avoid too low a water velocity in the scavenger air cooler pipes.

As the jacket water cooler is connected in series with the lube oil cooler, the seawater flow capacity for the latter is used also for the jacket water cooler.

Central cooling water system

If a central cooler is used, the above still applies, but the central cooling water capacities are used instead of the above seawater capacities. The seawater flow capacity for the central cooler can be reduced in proportion to the reduction of the total cooler heat dissipation, i.e. as follows:

\[V_{\text{cw,air}, M} = V_{\text{cw,air}, L_1} \times \left(\frac{Q_{\text{air}}\%}{100} \right) \]
\[V_{\text{cw,lub}, M} = V_{\text{cw,lub}, L_1} \times \left(\frac{Q_{\text{lub}}\%}{100} \right) \]
\[V_{\text{cw,jw}, M} = V_{\text{cw,jw}, L_1} \times \left(\frac{Q_{\text{jw}}\%}{100} \right) \]
\[V_{\text{cw,cent}, M} = V_{\text{cw,air}, M} + V_{\text{cw,lub}, M} \]
\[V_{\text{sw,cent}, M} = V_{\text{sw,cent}, L_1} \times \left(\frac{Q_{\text{cent}, M}}{Q_{\text{cent}, L_1}} \right) \]

Pump pressures

Irrespective of the capacities selected as per the above guidelines, the below-mentioned pump heads at the mentioned maximum working temperatures for each system shall be kept:

<table>
<thead>
<tr>
<th>Pump head bar</th>
<th>Max. working temp. °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel oil supply pump</td>
<td>4</td>
</tr>
<tr>
<td>Fuel oil circulating pump</td>
<td>6</td>
</tr>
<tr>
<td>Lubricating oil pump</td>
<td>4.1</td>
</tr>
<tr>
<td>Seawater pump</td>
<td>2.5</td>
</tr>
<tr>
<td>Central cooling water pump</td>
<td>2.5</td>
</tr>
<tr>
<td>Jacket water pump</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Flow velocities

For external pipe connections, we prescribe the following maximum velocities:

- Marine diesel oil ... 1.0 m/s
- Heavy fuel oil ... 0.6 m/s
- Lubricating oil ... 1.8 m/s
- Cooling water ... 3.0 m/s
Example 1:

Pump and cooler capacities for a derated 6S50MC6 with high efficiency MAN Diesel turbocharger type TCA, fixed pitch propeller and central cooling water system.

Nominal MCR, \(P_{L1} \) \(8,580 \) kW (100.0%) and 127.0 r/min (100.0%)

Specified MCR, \(P_{M} \) \(7,293 \) kW (85.0%) and 114.3 r/min (90.0%)

Optimising point, \(P_{O} \) \(6,564 \) kW (76.5%) and 110.4 r/min (86.9%), \(P_{O} = 90.0\% \) of \(P_{M} \)

The method of calculating the reduced capacities for point M (\(n_{M\%} = 90.0\% \) and \(P_{M\%} = 85.0\% \)) is shown below.

The values valid for the nominal rated engine are found in the ‘List of Capacities’, Figs. 6.03.01 and 6.03.02, and are listed together with the result in the figure on the next page.

Heat dissipation of scavenge air cooler

Fig. 6.04.01 which approximately indicates a \(Q_{air\%} = 83.1\% \) heat dissipation, and corrected for optimising point O lower than M, by applying correcting factor \(k_{O} \), equal 83.1 \& (1 + 0.27 \times (1\%\%0.900)) = 85.3\%, i.e.:
\[
Q_{air,M} = Q_{air,L1} \times Q_{air\%} / 100
\]
\[
Q_{air,M} = 3,340 \times 0.853 = 2,849 \text{ kW}
\]

Heat dissipation of jacket water cooler

Fig. 6.04.02 indicates a \(Q_{jw\%} = 88.5\% \) heat dissipation; i.e.:
\[
Q_{jw,M} = Q_{jw,L1} \times Q_{jw\%} / 100
\]
\[
Q_{jw,M} = 1,250 \times 0.885 = 1,106 \text{ kW}
\]

Heat dissipation of lube oil cooler

Fig. 6.04.03 indicates a \(Q_{lub\%} = 91.7\% \) heat dissipation; i.e.:
\[
Q_{lub,M} = Q_{lub,L1} \times Q_{lub\%} / 100
\]
\[
Q_{lub,M} = 710 \times 0.917 = 651 \text{ kW}
\]

Heat dissipation of central water cooler

\[
Q_{cent,M} = Q_{air,M} + Q_{jw,M} + Q_{lub,M}
\]
\[
Q_{cent,M} = 2,849 + 1,106 + 651 = 4,606 \text{ kW}
\]

Total cooling water flow through scavenge air coolers

\[
V_{cw,air,M} = V_{cw,air,L1} \times Q_{air\%} / 100
\]
\[
V_{cw,air,M} = 125 \times 0.853 = 107 \text{ m}^3/\text{h}
\]

Cooling water flow through lubricating oil cooler

\[
V_{cw,lub,M} = V_{cw,lub,L1} \times Q_{lub\%} / 100
\]
\[
V_{cw,lub,M} = 95 \times 0.917 = 87 \text{ m}^3/\text{h}
\]

Cooling water flow through central cooler
(Central cooling water pump)
\[
V_{cw,cent,M} = V_{cw,air,M} + V_{cw,lub,M}
\]
\[
V_{cw,cent,M} = 107 + 87 = 194 \text{ m}^3/\text{h}
\]

Cooling water flow through jacket water cooler
(as for lube oil cooler)
\[
V_{cw,jw,M} = V_{cw,jw,L1} \times Q_{jw\%} / 100
\]
\[
V_{cw,jw,M} = 87 \text{ m}^3/\text{h}
\]

Seawater pump for central cooler

As the seawater pump capacity and the central cooler heat dissipation for the nominal rated engine found in the ‘List of Capacities’ are 260 m\(^3\)/h and 5,300 kW the derated seawater pump flow equals:

Seawater pump:

\[
V_{sw,cent,M} = V_{sw,cent,L1} \times Q_{cent\%} / Q_{cent,L1}
\]
\[
= 260 \times 4,606 / 5,300 = 226 \text{ m}^3/\text{h}
\]
<table>
<thead>
<tr>
<th>Pumps:</th>
<th>Specified MCR (M)</th>
<th>Nominal rated engine (L_i) High efficiency turbocharger (TCA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel oil circulating pump</td>
<td>5.3</td>
<td>8,580 kW</td>
</tr>
<tr>
<td>Fuel oil supply pump</td>
<td>2.2</td>
<td>at 127.0 r/min</td>
</tr>
<tr>
<td>Jacket cooling water pump</td>
<td>66</td>
<td>7,293 kW</td>
</tr>
<tr>
<td>Central cooling water pump</td>
<td>220</td>
<td>at 114.3 r/min</td>
</tr>
<tr>
<td>Seawater pump</td>
<td>260</td>
<td>100%</td>
</tr>
<tr>
<td>Lubricating oil pump</td>
<td>190</td>
<td>90%</td>
</tr>
<tr>
<td>Pumps:</td>
<td>Specified MCR (M)</td>
<td>Nominal rated engine (L_i) High efficiency turbocharger (TCA)</td>
</tr>
<tr>
<td>Fuel oil circulating pump</td>
<td>5.3</td>
<td>8,580 kW</td>
</tr>
<tr>
<td>Fuel oil supply pump</td>
<td>2.2</td>
<td>at 127.0 r/min</td>
</tr>
<tr>
<td>Jacket cooling water pump</td>
<td>66</td>
<td>7,293 kW</td>
</tr>
<tr>
<td>Central cooling water pump</td>
<td>220</td>
<td>at 114.3 r/min</td>
</tr>
<tr>
<td>Seawater pump</td>
<td>260</td>
<td>100%</td>
</tr>
<tr>
<td>Lubricating oil pump</td>
<td>190</td>
<td>90%</td>
</tr>
<tr>
<td>Coolers:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scavenge air cooler</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat dissipation</td>
<td>3,340</td>
<td></td>
</tr>
<tr>
<td>Central water quantity</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>Lub. oil cooler</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat dissipation</td>
<td>710</td>
<td></td>
</tr>
<tr>
<td>Lubricating oil quantity</td>
<td>190</td>
<td></td>
</tr>
<tr>
<td>Central water quantity</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Jacket water cooler</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat dissipation</td>
<td>1,250</td>
<td></td>
</tr>
<tr>
<td>Jacket cooling water quantity</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>Central water quantity</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Central cooler</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat dissipation</td>
<td>5,300</td>
<td></td>
</tr>
<tr>
<td>Central water quantity</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>Seawater quantity</td>
<td>260</td>
<td></td>
</tr>
<tr>
<td>Fuel oil heater:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exhaust gas amount</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exhaust gas temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air consumption</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gases at ISO ambient conditions*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beginning air system: 30 bar (gage)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reversible engine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Receiver volume (12 starts)</td>
<td>m³</td>
<td>2 x 4.5</td>
</tr>
<tr>
<td>Compressor capacity, total</td>
<td>m³/h</td>
<td>270</td>
</tr>
<tr>
<td>Non-reversible engine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Receiver volume (6 starts)</td>
<td>m³</td>
<td>2 x 4.5</td>
</tr>
<tr>
<td>Compressor capacity, total</td>
<td>m³/h</td>
<td>150</td>
</tr>
</tbody>
</table>

The air consumption and exhaust gas figures are expected and refer to 100% specified MCR, ISO ambient reference conditions and the exhaust gas back pressure 300 mm WC
The exhaust gas temperatures refer to after turbocharger
* Calculated in example 3, in this chapter

Example 1 – Capacities of derated 6S50MC6 with high efficiency MAN Diesel turbocharger type TCA and central cooling water system.
Freshwater Generator

If a freshwater generator is installed and is utilising the heat in the jacket water cooling system, it should be noted that the actual available heat in the jacket cooling water system is lower than indicated by the heat dissipation figures valid for nominal MCR (L) given in the List of Capacities. This is because the latter figures are used for dimensioning the jacket water cooler and hence incorporate a safety margin which can be needed when the engine is operating under conditions such as, e.g. overload. Normally, this margin is 10% at nominal MCR.

Calculation Method

For a derated diesel engine, i.e. an engine having a specified MCR (M) and/or an optimising point (O) different from L, the relative jacket water heat dissipation for point M and O may be found, as previously described, by means of Fig. 6.04.02.

At part load operation, lower than optimising power, the actual jacket water heat dissipation will be reduced according to the curves for fixed pitch propeller (FPP) or for constant speed, controllable pitch propeller (CPP), respectively, in Fig. 6.04.04.

With reference to the above, the heat actually available for a derated diesel engine may then be found as follows:

1. Engine power between optimising and specified power.

 For powers between specified MCR (M) and optimising power (O), the diagram Fig. 6.04.02 is to be used, i.e. giving the percentage correction factor $Q_{jw\%}$ and hence for optimising power P_O:
 \[
 Q_{jw, O} = Q_{jw, L1} \times \frac{Q_{jw\%}}{100} \times 0.9 \quad (0.88) \quad [1]
 \]

2. Engine power lower than optimising power.

 For powers lower than the optimising power, the value $Q_{jw, O}$ found for point O by means of the above equation [1] is to be multiplied by the correction factor k_p found in Fig. 6.04.04 and hence
 \[
 Q_{jw} = Q_{jw, O} \times k_p \quad \text{-15%/0%} \quad [2]
 \]

where
- Q_{jw} = jacket water heat dissipation
- $Q_{jw, L1}$ = jacket water heat dissipation at nominal MCR (L)
- $Q_{jw\%}$ = percentage correction factor from Fig. 6.04.02
- $Q_{jw, O}$ = jacket water heat dissipation at optimising power (O), found by means of equation [1]
- k_p = part load correction factor from Fig. 6.04.04
- 0.9 = factor for safety margin of cooler, tropical ambient conditions

The heat dissipation is assumed to be more or less independent of the ambient temperature conditions, yet the safety margin/ambient condition factor of about 0.88 instead of 0.90 will be more accurate for ambient conditions corresponding to ISO temperatures or lower. The heat dissipation tolerance from -15% to 0% stated above is based on experience.
When using a normal freshwater generator of the single-effect vacuum evaporator type, the freshwater production may, for guidance, be estimated as 0.03 t/24h per 1 kW heat, i.e.:

$$M_{fw} = 0.03 \times Q_{jw} \text{ t/24h} \quad [-15\%/0\%] \quad [3]$$

where

- M_{fw} is the freshwater production in tons per 24 hours

and

- Q_{jw} is to be stated in kW

If necessary, all the actually available jacket cooling water heat may be used provided that a special temperature control system ensures that the jacket cooling water temperature at the outlet from the engine does not fall below a certain level. Such a temperature control system may consist, e.g., of a special by-pass pipe installed in the jacket cooling water system, see Fig. 6.04.05, or a special built-in temperature control in the freshwater generator, e.g., an automatic start/stop function, or similar.

If such a special temperature control is not applied, we recommend limiting the heat utilised to maximum 50% of the heat actually available at specified MCR, and only using the freshwater generator at engine loads above 50%. Considering the cooler margin of 10% and the minus tolerance of -15%, this heat corresponds to

$$50 \times (1.00-0.15) \times 0.9 = 38\%$$

of the jacket water cooler capacity $Q_{jw,M}$ used for dimensioning of the jacket water cooler.

Fig. 6.04.05: Freshwater generators. Jacket cooling water heat recovery flow diagram
Calculation of Freshwater Production for Derated Engine

Example 2:

Freshwater production from a derated 6S50MC6 with high efficiency MAN Diesel turbocharger TCA and fixed pitch propeller.

Based on the engine ratings below, this example will show how to calculate the expected available jacket cooling water heat removed from the diesel engine, together with the corresponding freshwater production from a freshwater generator.

The calculation is made for the service rating (S) of the diesel engine being 80% of the specified MCR.

Nominal MCR, (L) \(P_{L_1} = 8,580 \text{ kW (100.0%)} \) and 127.0 r/min (100.0%)

Specified MCR, (M) \(P_{M} = 7,293 \text{ kW (85.0%)} \) and 114.3 r/min (90.0%)

Optimising point, (O) \(P_{O} = 6,564 \text{ kW (76.5%)} \) and 110.4 r/min (86.9%), \(P_{O} = 90.0\% \) of \(P_{M} \)

Service rating, (S) \(P_{S} = 5,834 \text{ kW and 106.1 r/min, } P_{S} = 80.0\% \) of \(P_{M} \) and \(P_{S} = 88.9\% \) of \(P_{O} \)

Ambient reference conditions: 20° C air and 18° C cooling water.

The expected available jacket cooling water heat at service rating is found as follows:

\[
Q_{jw,L_1} = 1,250 \text{ kW from List of Capacities}
\]

\[
Q_{jw\%} = 81.5\% \text{ using 76.5\% power and 86.9\% speed for O in Fig. 6.04.02}
\]

By means of equation [1], and using factor 0.88 for actual ambient condition the heat dissipation in the optimising point (O) is found:

\[
Q_{jw,O} = Q_{jw,L_1} \times \frac{Q_{jw\%}}{100} \times 0.88
\]

\[
= 1,250 \times \frac{81.5}{100} \times 0.88 = 897 \text{ kW}
\]

By means of equation [2], the heat dissipation in the service point (S) i.e. for 88.9\% of optimising power, is found:

\[
k_p = 0.918 \text{ using 88.9\% in Fig. 6.04.04}
\]

\[
Q_{jw} = Q_{jw,O} \times k_p = 897 \times 0.918 = 823 \text{ kW}
\]

For the service point the corresponding expected obtainable freshwater production from a freshwater generator of the single effect vacuum evaporator type is then found from equation [3]:

\[
M_{fw} = 0.03 \times Q_{jw} = 0.03 \times 823 = 24.7 \text{ t/24h}
\]

\[-15%/0\%\]
Exhaust Gas Amount and Temperature

Influencing factors

The exhaust gas data to be expected in practice depends, primarily, on the following three factors:

a) The specified MCR point of the engine (point M):

\[P_{M} : \text{power in kW at SMCR point} \]
\[n_{M} : \text{speed in r/min at SMCR point} \]

and to a certain degree on the optimising point O with the percentage power \(P_{O\%} = \% \text{ of SMCR power} \):

\[P_{O\%} = \left(\frac{P_{O}}{P_{M}} \right) \times 100\% \]

b) The ambient conditions, and exhaust gas back-pressure:

\[T_{\text{air}} : \text{actual ambient air temperature, in °C} \]
\[p_{\text{bar}} : \text{actual barometric pressure, in mbar} \]
\[T_{\text{CW}} : \text{actual scavenge air coolant temperature, in °C} \]
\[\Delta P_{M} : \text{exhaust gas back-pressure in mm WC at specified MCR} \]

c) The continuous service rating of the engine (point S), valid for fixed pitch propeller or controllable pitch propeller (constant engine speed):

\[P_{S} : \text{continuous service rating of engine, in kW} \]

Calculation Method

To enable the project engineer to estimate the actual exhaust gas data at an arbitrary service rating, the following method of calculation may be used. The partial calculations based on the above influencing factors have been summarised in equations [4] and [5].

\[
M_{\text{exh}} : \text{exhaust gas amount in kg/h, to be found}
\]
\[
T_{\text{exh}} : \text{exhaust gas temperature in °C, to be found}
\]

\[
M_{\text{exh}} = M_{L1} \times \frac{P_{M}}{P_{L1}} \times \left(1 + \frac{\Delta m_{\text{M}\%}}{100} \right) \times \left(1 + \frac{\Delta M_{\text{amb}\%}}{100} \right) \times \left(1 + \frac{\Delta m_{\text{S}\%}}{100} \right) \times \frac{P_{S\%}}{100} \quad \text{kg/h} +/\!-5\% \quad [4]
\]

\[
T_{\text{exh}} = T_{L1} + \Delta T_{\text{M}} + \Delta T_{O} + \Delta T_{\text{amb}} + \Delta T_{S} \quad °\text{C}
\quad +/\!-15 °\text{C} \quad [5]
\]

where, according to ‘List of capacities’, i.e. referring to ISO ambient conditions and 300 mm WC back-pressure and specified/optimised in L1:

\[M_{L1} : \text{exhaust gas amount in kg/h at nominal MCR (L1)} \]
\[T_{L1} : \text{exhaust gas temperature after turbocharger in °C at nominal MCR (L1)} \]

Fig. 6.04.06: Summarising equations for exhaust gas amounts and temperatures

The partial calculations based on the influencing factors are described in the following:

a) Correction for choice of specified MCR point

When choosing a specified MCR point ‘M’ other than the nominal MCR point ‘L1’, the resulting changes in specific exhaust gas amount and temperature are found by using as input in diagrams the corresponding percentage values (of L1) for specified MCR power \(P_{M\%} \) and speed \(n_{M\%} \):

\[P_{M\%} = \frac{P_{M}}{P_{L1}} \times 100\% \]
\[n_{M\%} = \frac{n_{M}}{n_{L1}} \times 100\% \]
\[
\Delta m_{M\%} = 14 \times \ln \left(\frac{P_M}{P_{L1}} \right) - 24 \times \ln \left(\frac{n_M}{n_{L1}} \right)
\]

Fig. 6.04.07: Change of specific exhaust gas amount, \(\Delta m_{M\%}\) in % of \(L_1\) value and independent of \(P_O\)

\[
\Delta T_M = 15 \times \ln \left(\frac{P_M}{P_{L1}} \right) + 45 \times \ln \left(\frac{n_M}{n_{L1}} \right)
\]

Fig. 6.04.08: Change of exhaust gas temperature, \(\Delta T_M\) in point M, in °C after turbocharger relative to \(L_1\) value and valid for \(P_O = P_M\)

b) Correction for actual ambient conditions and back-pressure

For ambient conditions other than ISO 3046-1:2002 (E) and ISO 15550:2002 (E), and back-pressure other than 300 mm WC at specified MCR point \(M\), the correction factors stated in the table in Fig. 6.04.09 may be used as a guide, and the corresponding relative change in the exhaust gas data may be found from equations [7] and [8], shown in Fig. 6.04.10.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Change</th>
<th>Change of exhaust gas temperature</th>
<th>Change of exhaust gas amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blower inlet temperature</td>
<td>+ 10° C</td>
<td>+ 16.0° C</td>
<td>- 4.1 %</td>
</tr>
<tr>
<td>Blower inlet pressure (barometric pressure)</td>
<td>+ 10 mbar</td>
<td>- 0.1° C</td>
<td>+ 0.3 %</td>
</tr>
<tr>
<td>Charge air coolant temperature (seawater temperature)</td>
<td>+ 10° C</td>
<td>+ 1.0° C</td>
<td>+ 1.9 %</td>
</tr>
<tr>
<td>Exhaust gas back pressure at the specified MCR point</td>
<td>+ 100 mm WC</td>
<td>+ 5.0° C</td>
<td>- 1.1 %</td>
</tr>
</tbody>
</table>

Fig. 6.04.09: Correction of exhaust gas data for ambient conditions and exhaust gas back pressure
\[\Delta M_{\text{amb}}\% = -0.41 \times (T_{\text{air}} - 25) + 0.03 \times (p_{\text{bar}} - 1000) + 0.19 \times (T_{\text{CW}} - 25) - 0.011 \times (\Delta p_{M} - 300) \% \]
\[\Delta T_{\text{amb}} = 1.6 \times (T_{\text{air}} - 25) - 0.01 \times (p_{\text{bar}} - 1000) + 0.1 \times (T_{\text{CW}} - 25) + 0.05 \times (\Delta p_{M} - 300) ^\circ\text{C} \]

where the following nomenclature is used:

- \(\Delta M_{\text{amb}}\% \): change in exhaust gas amount, in % of amount at ISO conditions
- \(\Delta T_{\text{amb}} \): change in exhaust gas temperature, in °C compared with temperatures at ISO conditions

Fig. 6.04.10: Exhaust gas correction formula for ambient conditions and exhaust gas back pressure

\[P_{S\%} = (P_{S}/P_{M}) \times 100\% \]
\[\Delta m_{S\%} = 37 \times (P_{S}/P_{M})^2 - 83 \times (P_{S}/P_{M})^2 + 31 \times (P_{S}/P_{M}) + 15 \]

Fig. 6.04.11: Change of specific exhaust gas amount, \(\Delta m_{S\%} \) in % at part load, and valid for FPP and CPP

\[P_{S\%} = (P_{S}/P_{M}) \times 100\% \]
\[\Delta T_{S} = 262 \times (P_{S}/P_{M})^2 - 413 \times (P_{S}/P_{M}) + 151 \]

Fig. 6.04.12: Change of exhaust gas temperature, \(\Delta T_{S} \) in °C at part load, and valid for FPP and CPP

c) Correction for engine load

Figs. 6.04.11 and 6.04.12 may be used, as guidance, to determine the relative changes in the specific exhaust gas data when running at part load, compared to the values in the specified MCR point, i.e. using as input \(P_{S\%} = (P_{S}/P_{M}) \times 100\% \):

- \(\Delta m_{S\%} \): change in specific exhaust gas amount, in % of specific amount at specified MCR point, see Fig. 6.04.11.
- \(\Delta T_{S} \): change in exhaust gas temperature, in °C, see Fig. 6.04.12.
Calculation of Exhaust Data for Derated Engine

Example 3:

Expected exhaust gas data for a derated 6S50MC6 with high efficiency MAN Diesel turbocharger type TCA and fixed pitch propeller.

Based on the engine ratings below, and by means of an example, this chapter will show how to calculate the expected exhaust gas amount and temperature at service rating, and for a given ambient reference condition different from ISO.

The calculation is made for the service rating (S) being 80% of the specified MCR power of the diesel engine.

Nominal MCR, (L) $P_{L1}: 8,580 \text{ kW (100.0%)}$ and $127.0 \text{ r/min (100.0%)}$

Specified MCR, (M) $P_{M}: 7,293 \text{ kW (85.0%)}$ and $114.3 \text{ r/min (90.0%)}$

Optimising point, (O) $P_{O}: 6,564 \text{ kW (76.5%)}$ and $110.4 \text{ r/min (86.9%)}$, $P_{O} = 90.0\%$ of P_{M}

Service rating, (S) $P_{S}: 5,834 \text{ kW and 106.1 r/min, } P_{S} = 80.0\%$ of P_{M}

Reference conditions

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air temperature T_{air}</td>
<td>20° C</td>
</tr>
<tr>
<td>Scavenge air coolant temperature T_{CW}</td>
<td>18° C</td>
</tr>
<tr>
<td>Barometric pressure p_{bar}</td>
<td>1,013 mbar</td>
</tr>
<tr>
<td>Exhaust gas back-pressure at specified MCR Δp_{M}</td>
<td>300 mm WC</td>
</tr>
</tbody>
</table>

a) Correction for choice of specified MCR point M and optimising point O:

- $P_{M\%} = \frac{7,293}{8,580} \times 100 = 85.0\%$
- $n_{M\%} = \frac{114.3}{127.0} \times 100 = 90.0\%$

By means of Figs. 6.04.07 and 6.04.08:

- $\Delta m_{M\%} = +0.25 \%$
- $\Delta T_{M} = -7.2^\circ$ C

As the engine is optimised in O lower than 100% M, and $P_{O\%} = 90.0\%$ of P_{M}

we get by means of equation [6]

- $\Delta T_{O} = - 0.3 \times (100 - 90.0) = - 3.0^\circ$ C

b) Correction for ambient conditions and back-pressure:

By means of equations [7] and [8]:

- $\Delta M_{amb\%} = - 0.41 \times (20 - 25) + 0.03 \times (1,013 - 1,000)$
 - $0.19 \times (18 - 25) - 0.011 \times (300 - 300) \%$
 - $\Delta M_{amb\%} = + 1.11\%$

- $\Delta T_{amb} = 1.6 \times (20 - 25) - 0.01 \times (1,013 - 1,000)$
 - $0.1 \times (18 - 25) + 0.05 \times (300 - 300) ^\circ$ C
 - $\Delta T_{amb} = - 8.8^\circ$ C

c) Correction for the engine load:

Service rating = 80% of specified MCR power

By means of Figs. 6.04.11 and 6.04.12:

- $\Delta m_{S\%} = + 5.6\%$
- $\Delta T_{S} = - 11.7^\circ$ C
Final calculation

By means of equations [4] and [5], the final result is found taking the exhaust gas flow M_{L1} and temperature T_{L1} from the ‘List of Capacities’:

\[
M_{L1} = 80,400 \text{ kg/h}
\]

\[
M_{\text{exh}} = 80,400 \times \frac{7.293}{8.580} \times (1 + \frac{+0.25}{100}) \times (1 + \frac{1.11}{100}) \times (1 + \frac{5.6}{100}) \times 80 \times \frac{80}{100} = 58,520 \text{ kg/h}
\]

\[
M_{\text{exh}} = 58,500 \text{ kg/h} \pm 5\%
\]

Exhaust gas data at specified MCR (ISO)

At specified MCR (M), the running point may be in equations [4] and [5] considered as a service point where $P_{S\%} = 100$, $\Delta m_{S\%} = 0.0$ and $\Delta T_{S} = 0.0$.

For ISO ambient reference conditions where $\Delta M_{\text{amb\%}} = 0.0$ and $\Delta T_{\text{amb}} = 0.0$, the corresponding calculations will be as follows:

\[
M_{\text{exh,M}} = 80,400 \times \frac{7.293}{8.580} \times (1 + \frac{+0.25}{100}) \times (1 + \frac{0.0}{100}) \times (1 + \frac{0.0}{100}) \times (1 + \frac{0.0}{100}) \times \frac{80}{100} = 68,511 \text{ kg/h}
\]

\[
M_{\text{exh,M}} = 68,500 \text{ kg/h} \pm 5\%
\]

The exhaust gas temperature

\[
T_{L1} = 245^\circ \text{C}
\]

\[
T_{\text{exh}} = 245 - 7.2 - 3.0 - 8.8 - 11.7 = 214.3^\circ \text{C}
\]

\[
T_{\text{exh}} = 214.3^\circ \text{C} \pm 15^\circ \text{C}
\]

The air consumption will be:

\[
68,511 \times 0.982 \text{ kg/h} = 67,728 \text{ kg/h} \leftrightarrow \frac{67,278}{3,600} \text{ kg/s} = 18.7 \text{ kg/s}
\]
Fuel
Pressurised Fuel Oil System

The system is so arranged that both diesel oil and heavy fuel oil can be used, see figure 7.01.01.

From the service tank the fuel is led to an electrically driven supply pump by means of which a pressure of approximately 4 bar can be maintained in the low pressure part of the fuel circulating system, thus avoiding gasification of the fuel in the venting box in the temperature ranges applied.

The venting box is connected to the service tank via an automatic deaerating valve, which will release any gases present, but will retain liquids.

From the low pressure part of the fuel system the fuel oil is led to an electrically-driven circulating pump, which pumps the fuel oil through a heater and a full flow filter situated immediately before the inlet to the engine.

An in-line viscosity regulator located after the heater controls the heating temperature according to the prescribed viscosity of the specific fuel oil.

Design parameters

To ensure ample filling of the fuel injection pumps, the capacity of the electrically-driven circulating pump is higher than the amount of fuel consumed by the diesel engine. Surplus fuel oil is recirculated from the engine through the venting box.

To ensure a constant fuel pressure to the fuel injection pumps during all engine loads, a spring loaded overflow valve is inserted in the fuel oil system on the engine.

The fuel oil pressure measured on the engine (at fuel pump level) should be 7-8 bar, equivalent to a circulating pump pressure of 10 bar.

The built-on overflow valves, if any, at the supply pumps are to be adjusted to 5 bar, whereas the external bypass valve is adjusted to 4 bar. The pipes between the tanks and the supply pumps shall have minimum 50% larger passage area than the pipe between the supply pump and the circulating pump.

If the fuel oil pipe ‘X’ at inlet to engine is made as a straight line immediately at the end of the engine, it will be necessary to mount an expansion joint. If the connection is made as indicated, with a bend immediately at the end of the engine, no expansion joint is required.

Fuel Pumps and Drain

The introduction of the pump sealing arrangement, the so-called ‘umbrella’ type, has made it possible to omit the separate camshaft lubricating oil system.

The umbrella type fuel oil pump has an additional external leakage rate of clean fuel oil which, through ‘AD’, is led to a tank and can be pumped to the heavy fuel oil service tank or settling tank. The flow rate is approx. 1.25 litres/cyl. h.

The main purpose of the drain ‘AF’ is to collect pure fuel oil from the fuel pumps as well as the unintentional leakage from the high pressure pipes. The drain oil is lead to a tank and can be pumped to the Heavy Fuel Oil service tank or to the settling tank.

The ‘AF’ drain is provided with a box for giving alarm in case of leakage in a high pressure pipes.

The main components of the pressurised fuel oil system are further explained in section 7.05.
Fuel Oil System

Fig. 7.01.01: Fuel oil system

Diesel oil
Heavy fuel oil
Heated pipe with insulation
 a) Tracing fuel oil lines: Max. 150 °C
 b) Tracing drain lines: By jacket cooling water

The letters refer to the list of ‘Counterflanges’
Fuel considerations

When the engine is stopped, the circulating pump will continue to circulate heated heavy fuel through the fuel oil system on the engine, thereby keeping the fuel pumps heated and the fuel valves deaerated. This automatic circulation of preheated fuel during engine standstill is the background for our recommendation:

Constant operation on heavy fuel

In addition, if this recommendation was not followed, there would be a latent risk of diesel oil and heavy fuels of marginal quality forming incompatible blends during fuel changeover or when operating in areas with restrictions on sulphur content in fuel oil due to exhaust gas emission control.

In special circumstances a changeover to diesel oil may become necessary – and this can be performed at any time, even when the engine is not running. Such a changeover may become necessary if, for instance, the vessel is expected to be inactive for a prolonged period with cold engine e.g. due to:

- docking
- stop for more than five days
- major repairs of the fuel system, etc.

Heating of drain pipe

Owing to the relatively high viscosity of the heavy fuel oil, it is recommended that the drain pipe and the tank are heated to min. 50 °C.

The drain pipe between engine and tank can be heated by the jacket water, as shown in Fig. 7.01.01 ‘Fuel pipe heating’ as flange ‘BD’.

The size of the sludge tank is determined on the basis of the draining intervals, the classification society rules, and on whether it may be vented directly to the engine room.

This drained clean oil will, of course, influence the measured SFOC, but the oil is thus not wasted, and the quantity is well within the measuring accuracy of the flowmeters normally used.

For external pipe connections, we prescribe the following maximum flow velocities:

- Marine diesel oil ... 1.0 m/s
- Heavy fuel oil .. 0.6 m/s

The fuel viscosity is influenced by factors such as emulsification of water into the fuel for reducing the NO\textsubscript{x} emission. This is further described in section 7.06.

An emulsification arrangement for the main engine is described in our publication:

Exhaust Gas Emission Control Today and Tomorrow

Further information about fuel oil specifications is available in our publication:

Operation on Heavy Residual Fuels

The publications are available at: www.mandiesel.com under ‘Quicklinks’ → ‘Technical Papers’.
Fuel oils

Marine diesel oil:

- Marine diesel oil ISO 8217, Class DMB
- British Standard 6843, Class DMB
- Similar oils may also be used

Heavy fuel oil (HFO)

Most commercially available HFO with a viscosity below 700 cSt at 50 °C (7,000 sec. Redwood I at 100 °F) can be used.

For guidance on purchase, reference is made to ISO 827:1996 and ISO 827:2005, British Standard 6843 and to CIMAC recommendations regarding requirements for heavy fuel for diesel engines, fourth edition 2003, in which the maximum acceptable grades are RMH 700 and RMK 700. The above-mentioned ISO and BS standards supersede BSMA 100 in which the limit was M9.

The data in the above HFO standards and specifications refer to fuel as delivered to the ship, i.e. before on-board cleaning.

In order to ensure effective and sufficient cleaning of the HFO, i.e. removal of water and solid contaminants, the fuel oil specific gravity at 15 °C (60 °F) should be below 0.991, unless modern types of centrifuges with adequate cleaning abilities are used.

Higher densities can be allowed if special treatment systems are installed.

Current analysis information is not sufficient for estimating the combustion properties of the oil. This means that service results depend on oil properties which cannot be known beforehand. This especially applies to the tendency of the oil to form deposits in combustion chambers, gas passages and turbines. It may, therefore, be necessary to rule out some oils that cause difficulties.

Guiding heavy fuel oil specification

Based on our general service experience we have, as a supplement to the above mentioned standards, drawn up the guiding HFO specification shown below.

Heavy fuel oils limited by this specification have, to the extent of the commercial availability, been used with satisfactory results on MAN B&W two-stroke low speed diesel engines.

The data refers to the fuel as supplied i.e. before any on-board cleaning.

<table>
<thead>
<tr>
<th>Guiding specification (maximum values)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Density at 15 °C</td>
<td>kg/m³</td>
</tr>
<tr>
<td>Kinematic viscosity</td>
<td>cSt</td>
</tr>
<tr>
<td>at 100 °C</td>
<td>≤ 55</td>
</tr>
<tr>
<td>at 50 °C</td>
<td>≤ 700</td>
</tr>
<tr>
<td>Flash point</td>
<td>°C</td>
</tr>
<tr>
<td>Pour point</td>
<td>°C</td>
</tr>
<tr>
<td>Carbon residue</td>
<td>% (m/m)</td>
</tr>
<tr>
<td>Ash</td>
<td>% (m/m)</td>
</tr>
<tr>
<td>Total sediment potential</td>
<td>% (m/m)</td>
</tr>
<tr>
<td>Water</td>
<td>% (v/v)</td>
</tr>
<tr>
<td>Sulphur</td>
<td>% (m/m)</td>
</tr>
<tr>
<td>Vanadium</td>
<td>mg/kg</td>
</tr>
<tr>
<td>Aluminum + Silicon</td>
<td>mg/kg</td>
</tr>
<tr>
<td>Equal to ISO 8217:2005 - RMK 700</td>
<td></td>
</tr>
<tr>
<td>/ CIMAC recommendation No. 21 - K700</td>
<td></td>
</tr>
</tbody>
</table>

* Provided automatic clarifiers are installed

m/m = mass v/v = volume

If heavy fuel oils with analysis data exceeding the above figures are to be used, especially with regard to viscosity and specific gravity, the engine builder should be contacted for advice regarding possible fuel oil system changes.
Fuel Oil Pipes and Drain Pipes

Fig. 7.03.01: Fuel oil pipes

S/L70-60MC-C
K98MC/MC-C, S90-80MC-C
K98MC/MC-C, S90MC-C, S70-50MC

Fig. 7.03.02: Fuel oil drain pipes

The letters refer to list of ‘Counterflanges’
The item Nos refer to ‘Guidance values automation’
Fuel Oil Pipe Insulation

Insulation of fuel oil pipes and fuel oil drain pipes should not be carried out until the piping systems have been subjected to the pressure tests specified and approved by the respective classification society and/or authorities, Fig. 7.04.01.

The directions mentioned below include insulation of hot pipes, flanges and valves with a surface temperature of the complete insulation of maximum 55 °C at a room temperature of maximum 38 °C. As for the choice of material and, if required, approval for the specific purpose, reference is made to the respective classification society.

Fuel oil pipes

The pipes are to be insulated with 20 mm mineral wool of minimum 150 kg/m³ and covered with glass cloth of minimum 400 g/m².

Fuel oil pipes and heating pipes together

Two or more pipes can be insulated with 30 mm wired mats of mineral wool of minimum 150 kg/m³ covered with glass cloth of minimum 400 g/m².

Flanges and valves

The flanges and valves are to be insulated by means of removable pads. Flange and valve pads are made of glass cloth, minimum 400 g/m², containing mineral wool stuffed to minimum 150 kg/m³.

Thickness of the pads to be:
Fuel oil pipes .. 20 mm
Fuel oil pipes and heating pipes together.... 30 mm

The pads are to be fitted so that they lap over the pipe insulating material by the pad thickness. At flanged joints, insulating material on pipes should not be fitted closer than corresponding to the minimum bolt length.

Mounting

Mounting of the insulation is to be carried out in accordance with the supplier’s instructions.

Fig. 7.04.01: Details of fuel oil pipes insulation, option: 4 35 121. Example from 98-50 MC engine
Heat Loss in Piping

Fig. 7.04.02: Heat loss/Pipe cover
Fuel Oil Pipe Heat Tracing

The steam tracing of the fuel oil pipes is intended to operate in two situations:

1. When the circulation pump is running, there will be a temperature loss in the piping, see Fig. 7.04.02. This loss is very small, therefore tracing in this situation is only necessary with very long fuel supply lines.

2. When the circulation pump is stopped with heavy fuel oil in the piping and the pipes have cooled down to engine room temperature, as it is not possible to pump the heavy fuel oil. In this situation the fuel oil must be heated to pumping temperature of about 50 °C.

To heat the pipe to pumping level we recommend to use 100 watt leaking/meter pipe.

Fuel Oil and Lubricating Oil Pipe Spray Shields

In order to fulfil IMO regulations, fuel oil and lubricating oil pipe assemblies are to be enclosed by spray shields as shown in Fig. 7.04.04a and b.

To avoid leaks, the spray shields are to be installed after pressure testing of the pipe system.

Fig. 7.04.03: Fuel oil pipe heat tracing

Fig. 7.04.04a: Spray Shields by anti-splashing tape

Fig. 7.04.04b: Spray Shields by clamping bands
Components for fuel oil system

Fuel oil centrifuges

The manual cleaning type of centrifuges are not to be recommended, neither for attended machinery spaces (AMS) nor for unattended machinery spaces (UMS). Centrifuges must be self-cleaning, either with total discharge or with partial discharge.

Distinction must be made between installations for:

- Specific gravities < 0.991 (corresponding to ISO 8217 and British Standard 6843 from RMA to RMH, and CIMAC from A to H-grades)

- Specific gravities > 0.991 and (corresponding to CIMAC K-grades).

For the latter specific gravities, the manufacturers have developed special types of centrifuges, e.g.:

- Alfa Laval.., Alcap
- Westfalia.., Unitrol
- Mitsubishi.., E-Hidens II

The centrifuge should be able to treat approximately the following quantity of oil:

\[0.23 \text{ litres/kWh} = 0.17 \text{ litres/BHP} \]

This figure includes a margin for:

- Water content in fuel oil
- Possible sludge, ash and other impurities in the fuel oil
- Increased fuel oil consumption, in connection with other conditions than ISO standard condition
- Purifier service for cleaning and maintenance.

The size of the centrifuge has to be chosen according to the supplier’s table valid for the selected viscosity of the Heavy Fuel Oil. Normally, two centrifuges are installed for Heavy Fuel Oil (HFO), each with adequate capacity to comply with the above recommendation.

A centrifuge for Marine Diesel Oil (MDO) is not a must, but if it is decided to install one on board, the capacity should be based on the above recommendation, or it should be a centrifuge of the same size as that for lubricating oil.

The Nominal MCR is used to determine the total installed capacity. Any derating can be taken into consideration in border-line cases where the centrifuge that is one step smaller is able to cover Specified MCR.

Fuel oil supply pump

This is to be of the screw or gear wheel type.

Fuel oil viscosity, specified...up to 700 cSt at 50 °C
Fuel oil viscosity maximum............................1000 cSt
Pump head...4 bar
Fuel oil flow ...see ‘List of capacities’
Delivery pressure4 bar
Working temperature100 °C
Minimum temperature.................................50 °C

The capacity stated in ‘List of capacities’ is to be fulfilled with a tolerance of: ±0% to +15% and shall also be able to cover the back-flushing, see ‘Fuel oil filter’.

Fuel oil circulating pump

This is to be of the screw or gear wheel type.

Fuel oil viscosity, specified...up to 700 cSt at 50 °C
Fuel oil viscosity normal...............................20 cSt
Fuel oil viscosity maximum.........................1000 cSt
Fuel oil flow ...see ‘List of capacities’
Pump head...6 bar
Delivery pressure ..10 bar
Working temperature150 °C

The capacity stated in ‘List of capacities’ is to be fulfilled with a tolerance of: ±0% to +15% and shall also be able to cover the back-flushing, see ‘Fuel oil filter’.

Pump head is based on a total pressure drop in filter and preheater of maximum 1.5 bar.
Fuel oil heater

The heater is to be of the tube or plate heat exchanger type.

The required heating temperature for different oil viscosities will appear from the ‘Fuel oil heating chart’. The chart is based on information from oil suppliers regarding typical marine fuels with viscosity index 70-80.

Since the viscosity after the heater is the controlled parameter, the heating temperature may vary, depending on the viscosity and viscosity index of the fuel.

Recommended viscosity meter setting is 10-15 cSt.

Fuel oil viscosity specified ... up to 700 cSt at 50°C
Fuel oil flow see capacity of fuel oil circulating pump
Heat dissipation see ‘List of capacities’
Pressure drop on fuel oil sidemaximum 1 bar
Working pressure 10 bar
Fuel oil inlet temperature approx. 100 °C
Fuel oil outlet temperature 150 °C
Steam supply, saturated 7 bar abs

To maintain a correct and constant viscosity of the fuel oil at the inlet to the main engine, the steam supply shall be automatically controlled, usually based on a pneumatic or an electrically controlled system.
Fuel oil filter

The filter can be of the manually cleaned duplex type or an automatic filter with a manually cleaned bypass filter.

If a double filter (duplex) is installed, it should have sufficient capacity to allow the specified full amount of oil to flow through each side of the filter at a given working temperature with a max. 0.3 bar pressure drop across the filter (clean filter).

If a filter with backflushing arrangement is installed, the following should be noted. The required oil flow specified in the ‘List of capacities’, i.e. the delivery rate of the fuel oil supply pump and the fuel oil circulating pump, should be increased by the amount of oil used for the backflushing, so that the fuel oil pressure at the inlet to the main engine can be maintained during cleaning.

In those cases where an automatically cleaned filter is installed, it should be noted that in order to activate the cleaning process, certain makers of filters require a greater oil pressure at the inlet to the filter than the pump pressure specified. Therefore, the pump capacity should be adequate for this purpose, too.

The fuel oil filter should be based on heavy fuel oil of: 130 cSt at 80 °C = 700 cSt at 50 °C = 7000 sec Redwood I/100 °F.

Fuel oil flow see ‘List of capacities’ Working pressure.................................10 bar Test pressure.......................... according to class rule Absolute fineness..50 µm Working temperature..................... maximum 150 °C Oil viscosity at working temperature.........15 cSt Pressure drop at clean filter.........maximum 0.3 bar Filter to be cleaned at a pressure drop of ...maximum 0.5 bar

Note:
Absolute fineness corresponds to a nominal fineness of approximately 30 µm at a retaining rate of 90%.

The filter housing shall be fitted with a steam jacket for heat tracing.

Fuel oil venting box

The design of the Fuel oil venting box is shown in Fig. 7.05.02. The size is chosen according to the maximum flow of the Fuel oil circulation pump, which is listed in section 6.03.

Flush of the fuel oil system

Before starting the engine for the first time, the system on board has to be flushed in accordance with MAN Diesel's recommendations 'Flush of Fuel Oil System' which is available on request.
Water In Fuel Emulsification

The emulsification of water into the fuel oil reduces the NO\textsubscript{x} emission with about 1% per 1% water added to the fuel up to about 20% without modification of the engine fuel injection equipment.

A Water In Fuel emulsion (WIF) mixed for this purpose and based on Heavy Fuel Oil (HFO) is stable for a long time, whereas a WIF based on Marine Diesel Oil is only stable for a short period of time unless an emulsifying agent is applied.

As both the MAN B&W two-stroke main engine and the MAN Diesel GenSets are designed to run on emulsified HFO, it can be used for a common system.

It is supposed below, that both the main engine and GenSets are running on the same fuel, either HFO or a homogenised HFO-based WIF.

Special arrangements are available on request for a more sophisticated system in which the GenSets can run with or without a homogenised HFO-based WIF, if the main engine is running on that.

Please note that the fuel pump injection capacity shall be confirmed for the main engine as well as the GenSets for the selected percentage of water in the WIF.

Temperature and pressure

When water is added by emulsification, the fuel viscosity increases. In order to keep the injection viscosity at 10-15 cSt and still be able to operate on up to 700 cSt fuel oil, the heating temperature has to be increased to about 170 °C depending on the water content.

The higher temperature calls for a higher pressure to prevent cavitation and steam formation in the system. The inlet pressure is thus set to 13 bar.

In order to avoid temperature chock when mixing water into the fuel in the homogeniser, the water inlet temperature is to be set to 70-90 °C.

Safety system

In case the pressure in the fuel oil line drops, the water homogenised into the Water In Fuel emulsion will evaporate, damaging the emulsion and creating supply problems. This situation is avoided by installing a third, air driven supply pump, which keeps the pressure as long as air is left in the tank ‘S’, see Fig. 7.06.01.

Before the tank ‘S’ is empty, an alarm is given and the drain valve is opened, which will drain off the WIF and replace it with HFO or diesel oil from the service tank.

The drain system is kept at atmospheric pressure, so the water will evaporate when the hot emulsion enters the safety tank. The safety tank shall be designed accordingly.

Impact on the auxiliary systems

Please note that if the engine operates on Water In Fuel emulsion (WIF), in order to reduce the NO\textsubscript{x} emission, the exhaust gas temperature will decrease due to the reduced air / exhaust gas ratio and the increased specific heat of the exhaust gas.

Depending on the water content, this will have an impact on the calculation and design of the following items:

- Freshwater generators
- Energy for production of freshwater
- Jacket water system
- Waste heat recovery system
- Exhaust gas boiler
- Storage tank for freshwater

For further information about emulsification of water into the fuel and use of Water In Fuel emulsion (WIF), please refer to our publication titled:

Exhaust Gas Emission Control Today and Tomorrow

The publication is available at: www.mandiesel.com under ‘Quicklinks’ → ‘Technical Papers’
Fig. 7.06.01: System for emulsification of water into the fuel common to the main engine and MAN Diesel GenSets
Lubricating Oil
Lubricating and Cooling Oil System

Since mid-1995 we have introduced, as standard, the so-called 'umbrella' type of fuel pump for which reason a separate camshaft lube oil system is no longer necessary.

The lubricating oil is pumped from a bottom tank, by means of the main lubricating oil pump (4 40 601), to the lubricating oil cooler (4 40 605), a thermostatic valve (4 40 610) and, through a full-flow filter (4 40 615), to the engine inlet RU, Fig. 8.01.01.

RU lubricates main bearings, thrust bearing, axial vibration damper, crankpin bearings, piston cooling, crosshead, camshaft and turbocharger bearings.

The major part of the oil is divided between piston cooling and crosshead lubrication.

From the engine, the oil collects in the oil pan, from where it is drained off to the bottom tank, see Fig. 8.06.01a 'Lubricating oil tank, with cofferdam' and Table 8.06.01b 'Lubricating oil tank, without cofferdam'.

The engine crankcase is vented through 'AR' by a pipe which extends directly to the deck. This pipe has a drain arrangement so that oil condensed in the pipe can be led to a drain tank, see details in Fig. 8.07.01.

Drains from the engine bedplate ‘AE’ are fitted on both sides, see Fig. 8.07.02 ‘Bedplate drain pipes’.

For external pipe connections, we prescribe a maximum oil velocity of 1.8 m/s.

Lubrication of turbochargers

Turbochargers with slide bearings are normally lubricated from the main engine system. AB is outlet from the turbocharger, see Figs. 8.03.01 to 8.03.03, which are shown with sensors for UMS.

Figs. 8.03.01 to 8.03.03 show the lube oil pipe arrangements for different turbocharger makes.
Lubricating and Cooling Oil Pipes

Fig. 8.01.02 Lubricating and Cooling Oil Pipes on engine
Hydraulic power supply unit

This section is not applicable
Lubricating Oil Pipes for Turbochargers

Fig. 8.03.01: MAN Diesel turbocharger type TCA

Fig. 8.03.02: ABB turbocharger type TPL
Fig. 8.03.03: Mitsubishi turbocharger type MET
Lubricating Oil Centrifuges and List of Lubricating Oils

Manual cleaning centrifuges can only be used for Attended Machinery Spaces (AMS). For Unattended Machinery Spaces (UMS), automatic centrifuges with total discharge or partial discharge are to be used.

The nominal capacity of the centrifuge is to be according to the supplier’s recommendation for lubricating oil, based on the figures:

0.136 litre/kWh

The Nominal MCR is used as the total installed power.

List of lubricating oils

The circulating oil (lubricating and cooling oil) must be of the rust and oxidation inhibited type of oil of SAE 30 viscosity grade.

In order to keep the crankcase and piston cooling spaces clean of deposits, the oil should have adequate dispersion and detergent properties.

Alkaline circulating oils are generally superior in this respect.

<table>
<thead>
<tr>
<th>Company</th>
<th>Circulating oil</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SAE 30/TBN 5-10</td>
</tr>
<tr>
<td>BP</td>
<td>Energol OE-HT/30</td>
</tr>
<tr>
<td>Total</td>
<td>Atlanta Marine D-3005</td>
</tr>
<tr>
<td>Castrol</td>
<td>CDX 30</td>
</tr>
<tr>
<td>Chevron</td>
<td>Veritas 800 Marine 30</td>
</tr>
<tr>
<td>Exxon</td>
<td>Exxmar XA</td>
</tr>
<tr>
<td>Mobil</td>
<td>Mobilgard 300</td>
</tr>
<tr>
<td>Shell</td>
<td>Melina 30/30S</td>
</tr>
<tr>
<td>Texaco</td>
<td>Doro AR 30</td>
</tr>
</tbody>
</table>

The oils listed have all given long-term satisfactory service in MAN B&W engine installations. Also other brands have been used with satisfactory results.
Components for Lubricating Oil System

Lubricating oil pump

The lubricating oil pump can be of the displacement wheel, or the centrifugal type:

- Lubricating oil viscosity, specified...75 cSt at 50 °C
- Lubricating oil viscosity maximum 400 cSt *
- Lubricating oil flow see ‘List of capacities’

Design pump head.......................... 4.1 bar
Delivery pressure 4.1 bar
Max. working temperature 70 °C

* 400 cSt is specified, as it is normal practice when starting on cold oil, to partly open the bypass valves of the lubricating oil pumps, so as to reduce the electric power requirements for the pumps.

The flow capacity must be within a range from 100 to 112% of the capacity stated.

The pump head is based on a total pressure drop across cooler and filter of maximum 1 bar.

The bypass valve shown between the main lubricating oil pumps Fig. 8.01.01 may be omitted in cases where the pumps have a built-in bypass or if centrifugal pumps are used.

If centrifugal pumps are used, it is recommended to install a throttle valve at position ‘005’ to prevent an excessive oil level in the oil pan if the centrifugal pump is supplying too much oil to the engine.

During trials, the valve should be adjusted by means of a device which permits the valve to be closed only to the extent that the minimum flow area through the valve gives the specified lubricating oil pressure at the inlet to the engine at full normal load conditions. It should be possible to fully open the valve, e.g. when starting the engine with cold oil.

It is recommended to install a 25 mm valve (pos. 006), with a hose connection after the main lubricating oil pumps, for checking the cleanliness of the lubricating oil system during the flushing procedure. The valve is to be located on the underside of a horizontal pipe just after the discharge from the lubricating oil pumps.

Lubricating oil cooler

The lubricating oil cooler must be of the shell and tube type made of seawater resistant material, or a plate type heat exchanger with plate material of titanium, unless freshwater is used in a central cooling water system.

- Lubricating oil viscosity, specified...75 cSt at 50 °C
- Lubricating oil flow see ‘List of capacities’
- Heat dissipation see ‘List of capacities’
- Lubricating oil temperature, outlet cooler...... 45 °C
- Working pressure on oil side............... 4.1 bar
- Pressure drop on oil sidemaximum 0.5 bar
- Cooling water flow see ‘List of capacities’
- Cooling water temperature at inlet:
 - seawater .. 32 °C
 - freshwater ... 36 °C
- Pressure drop on water sidemaximum 0.2 bar

The lubricating oil flow capacity must be within a range from 100 to 112% of the capacity stated.

The cooling water flow capacity must be within a range from 100 to 110% of the capacity stated.

To ensure the correct functioning of the lubricating oil cooler, we recommend that the seawater temperature is regulated so that it will not be lower than 10 °C.

The pressure drop may be larger, depending on the actual cooler design.

Lubricating oil temperature control valve

The temperature control system can, by means of a three-way valve unit, by-pass the cooler totally or partly.

- Lubricating oil viscosity, specified....75 cSt at 50 °C
- Lubricating oil flow see ‘List of capacities’
- Temperature range, inlet to engine 40 - 47 °C
Lubricating oil full flow filter

Lubricating oil flow see 'List of capacities'
Working pressure.............................. 4.1 bar
Test pressure.................. according to class rules
Absolute fineness............................. 40 µm*
Working temperature approximately 45 °C
Oil viscosity at working temp............ 90 - 100 cSt
Pressure drop with clean filtermaximum 0.2 bar
Filter to be cleaned at a pressure drop................... maximum 0.5 bar

* The absolute fineness corresponds to a nominal fineness of approximately 25 µm at a retaining rate of 90%.

The flow capacity must be within a range from 100 to 112% of the capacity stated.

The full-flow filter should be located as close as possible to the main engine.

If a double filter (duplex) is installed, it should have sufficient capacity to allow the specified full amount of oil to flow through each side of the filter at a given working temperature with a pressure drop across the filter of maximum 0.2 bar (clean filter).

If a filter with a back-flushing arrangement is installed, the following should be noted:

• The required oil flow, specified in the 'List of capacities', should be increased by the amount of oil used for the back-flushing, so that the lubricating oil pressure at the inlet to the main engine can be maintained during cleaning.

• If an automatically cleaned filter is installed, it should be noted that in order to activate the cleaning process, certain makes of filter require a higher oil pressure at the inlet to the filter than the pump pressure specified. Therefore, the pump capacity should be adequate for this purpose, too.

Flushing of lube oil system

Before starting the engine for the first time, the lubricating oil system on board has to be cleaned in accordance with MAN Diesel’s recommendations: 'Flushing of Main Lubricating Oil System', which is available on request.
Lubricating oil outlet

A protecting ring position 1-4 is to be installed if required, by class rules, and is placed loose on the tanktop and guided by the hole in the flange.

In the vertical direction it is secured by means of screw position 4, in order to prevent wear of the rubber plate.

Fig. 8.05.01: Lubricating oil outlet
Lubricating Oil Tank

Outlet from engine, 275 mm, having its bottom edge below the oil level (to obtain gas seal between crankcase and bottom tank).

Oil outlet from turbocharger 1 or pipe size see list of Counterflanges

125 mm air pipe

5 cyl.
6 cyl.
7 cyl.
8 cyl.
CyL no.

Seen from A-A
Lub oil pump suction
Min. height acc. to class requirement

Seen from B-B

Fig. 8.06.01a: Lubricating oil tank, vertical outlet, with cofferdam

* Based on 55 mm thickness of supporting chocks
** Min. dimensions for manholes.
Note:
When calculating the tank heights, allowance has not been made for the possibility that a quantity of oil in the lubricating oil system outside the engine may be returned to the bottom tank, when the pumps are stopped.

If the system outside the engine is so designed that an amount of the lubricating oil is drained back to the tank, when the pumps are stopped, the height of the bottom tank indicated in Table 8.06.01b has to be increased to include this quantity. If space is limited, however, other solutions are possible.

Table 8.06.01b: Lubricating oil tank, vertical outlet, with cofferdam

<table>
<thead>
<tr>
<th>Cylinder No.</th>
<th>Drain at cylinder No.</th>
<th>D0</th>
<th>D1</th>
<th>H0</th>
<th>H1</th>
<th>H2</th>
<th>L</th>
<th>OL</th>
<th>Qm³</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2-5</td>
<td>175</td>
<td>375</td>
<td>865</td>
<td>375</td>
<td>75</td>
<td>6,400</td>
<td>765</td>
<td>10.0</td>
</tr>
<tr>
<td>6</td>
<td>2-6</td>
<td>200</td>
<td>425</td>
<td>925</td>
<td>425</td>
<td>85</td>
<td>7,200</td>
<td>825</td>
<td>12.5</td>
</tr>
<tr>
<td>7</td>
<td>2-5-7</td>
<td>200</td>
<td>425</td>
<td>955</td>
<td>425</td>
<td>85</td>
<td>8,000</td>
<td>855</td>
<td>14.0</td>
</tr>
<tr>
<td>8</td>
<td>2-5-8</td>
<td>225</td>
<td>450</td>
<td>1,010</td>
<td>450</td>
<td>90</td>
<td>8,800</td>
<td>910</td>
<td>16.5</td>
</tr>
</tbody>
</table>

Lubricating oil tank operating conditions

The lubricating oil bottom tank complies with the rules of the classification societies by operation under the following conditions:

<table>
<thead>
<tr>
<th>Angle of inclination, degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Athwartships</td>
</tr>
<tr>
<td>Static</td>
</tr>
<tr>
<td>Fore and aft</td>
</tr>
<tr>
<td>Static</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>
Lubricating Oil Tank

Fig. 8.06.02a: Lubricating oil tank, vertical outlet, without cofferdam

* Based on 55 mm thickness of supporting chocks
** Min. dimensions for manholes
Note:
When calculating the tank heights, allowance has not been made for the possibility that a quantity of oil in the lubricating oil system outside the engine may be returned to the bottom tank, when the pumps are stopped.

If the system outside the engine is so designed that an amount of the lubricating oil is drained back to the tank, when the pumps are stopped, the height of the bottom tank indicated in Table 8.06.02b has to be increased to include this quantity. If space is limited, however, other solutions are possible.

<table>
<thead>
<tr>
<th>Cylinder No.</th>
<th>Drain at cylinder No.</th>
<th>D0</th>
<th>D1</th>
<th>H0</th>
<th>H1</th>
<th>H2</th>
<th>L</th>
<th>OL</th>
<th>Qm³</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2-5</td>
<td>175</td>
<td>375</td>
<td>865</td>
<td>375</td>
<td>75</td>
<td>6,400</td>
<td>765</td>
<td>10.0</td>
</tr>
<tr>
<td>6</td>
<td>2-5</td>
<td>200</td>
<td>425</td>
<td>925</td>
<td>425</td>
<td>85</td>
<td>7,200</td>
<td>825</td>
<td>12.5</td>
</tr>
<tr>
<td>7</td>
<td>2-5-7</td>
<td>200</td>
<td>425</td>
<td>955</td>
<td>425</td>
<td>85</td>
<td>8,000</td>
<td>855</td>
<td>14.0</td>
</tr>
<tr>
<td>8</td>
<td>2-5-8</td>
<td>225</td>
<td>450</td>
<td>1,010</td>
<td>450</td>
<td>90</td>
<td>8,800</td>
<td>910</td>
<td>16.5</td>
</tr>
</tbody>
</table>

Table 8.06.02b: Lubricating oil tank, vertical outlet, without cofferdam

Lubricating oil tank operating conditions

The lubricating oil bottom tank complies with the rules of the classification societies by operation under the following conditions:

<table>
<thead>
<tr>
<th>Angle of inclination, degrees</th>
<th>Athwartships</th>
<th>Fore and aft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Athwartships</td>
<td>Static</td>
<td>Dynamic</td>
</tr>
<tr>
<td>Static</td>
<td>15</td>
<td>22.5</td>
</tr>
<tr>
<td>Dynamic</td>
<td>5</td>
<td>7.5</td>
</tr>
</tbody>
</table>
Crankcase Venting and Bedplate Drain Pipes

Fig. 8.07.01: Crankcase venting

Fig. 8.07.02: Bedplate drain pipes
Cylinder Lubrication
Cylinder Lubricating Oil System

The cost of the cylinder lubricating oil is one of the largest contributions to total operating costs, next to the fuel oil cost. Another aspect is that the lubrication rate has a great influence on the cylinder condition, and thus on the overhauling schedules and maintenance costs.

It is therefore of the utmost importance that the cylinder lubricating oil system as well as its operation is optimised.

Cylinder Lubricator and Service Tank

As standard the engine is specified with MAN B&W Alpha Cylinder Lubricators (EoD: 4 42 104). Alternatively a mechanical cylinder lubricator driven by the engine can be installed.

The cylinder lube oil is supplied from a gravity-feed cylinder oil service tank to where it is being pumped from the cylinder oil storage tank. The size of the cylinder oil service tank depends on the owner’s and yard’s requirements, and it is normally dimensioned for minimum two days’ consumption.

The cylinder lubricating oil consumption could be monitored by installing a flow meter on the pressure side of the pump in the supply line to the service tank, if required by the shipowner. Provided the oil level in the service tank is kept the same every time the flow meter is being read, the accuracy is satisfactory.

A cylinder lubricating oil supply system for engine plants with MAN B&W Alpha Cylinder lubricators is shown in Fig. 9.02.02 and for plants with mechanical cylinder lubricators in Fig. 9.03.03. In both cases a dual system for supply of two different BN cylinder oils is shown.

Cylinder Oils

Cylinder oils should, preferably, be of the SAE 50 viscosity grade. Modern high-rated two-stroke engines have a relatively great demand for detergency in the cylinder oil. Therefore cylinder oils should be chosen according to the below list.

A BN 70 cylinder oil is to be used as the default choice of oil and it may be used on all fuel types. However, in case of the engine running on fuel with sulphur content lower than 1.5% for more than 1 to 2 weeks, we recommend to change to a lower BN cylinder oil such as BN 40-50.

The cylinder oils listed below have all given long-term satisfactory service during heavy fuel operation in MAN B&W engine installations:

<table>
<thead>
<tr>
<th>Company</th>
<th>Cylinder oil SAE 50/BN 70</th>
<th>Cylinder oil SAE 50/BN 40-50</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP</td>
<td>CLO-50 M</td>
<td>CL/CL-DX 405</td>
</tr>
<tr>
<td>Castrol</td>
<td>Cyltech 70</td>
<td>CL/CL-DX 405</td>
</tr>
<tr>
<td>Chevron</td>
<td>Delo Cyloil Special</td>
<td>Taro Special HT 50</td>
</tr>
<tr>
<td>Exxon</td>
<td>Exxmar X 70</td>
<td>Mobilgard L540</td>
</tr>
<tr>
<td>Mobil</td>
<td>Mobilgard 570</td>
<td>Mobilgard L540</td>
</tr>
<tr>
<td>Shell</td>
<td>Alexia 50</td>
<td>Alexia LS</td>
</tr>
<tr>
<td>Texaco</td>
<td>Taro Special HT 70</td>
<td>Taro Special HT 50</td>
</tr>
<tr>
<td>Total</td>
<td>Talusia HR70</td>
<td>Talusia LS 40</td>
</tr>
</tbody>
</table>

Also other brands have been used with satisfactory results.

Cylinder Oil Feed Rate (Dosage)

The recommendations are valid for all plants, whether controllable pitch or fixed pitch propellers are used.

In case of average sulphur content, the average cylinder oil feed rate at nominal MCR for MAN B&W Alpha Cylinder Lubricator is 0.7 g/kWh. Adjustment of the cylinder oil dosage of the MAN B&W Alpha Cylinder Lubricator to the sulphur content in the fuel being burnt is further explained in section 9.02.

The nominal cylinder oil feed rate at nominal MCR for a mechanical cylinder lubricator is typically 1.0 - 1.5 g/kWh.
MAN B&W Alpha Cylinder Lubrication System

The MAN B&W Alpha cylinder lubrication system, see Figs. 9.02.02 and 9.02.03, is designed to supply cylinder oil intermittently, every 2 to 20 engine revolutions with electronically controlled timing and dosage at a defined position.

Cylinder lubricating oil is fed to the engine by means of a pump station which as standard is mounted on the engine (EoD: 4 42 150) or could be placed in the engine room (option: 4 42 152).

The pump station has two pumps (one operating, the other stand-by with automatic start-up) with in-line filters and a heater, see Fig. 9.02.02.

The oil fed to the injectors is pressurised by means of one or two Alpha Lubricators placed on each cylinder and equipped with small multi-piston pumps, see Fig. 9.02.03.

Accumulator tanks on the lubricator inlet pipes ensure adequate filling of the lubricator while accumulators on the outlet pipes serve to dampen the pressure fluctuations. The oil pipes fitted on the engine is shown in Fig. 9.02.03.

On engines with double lubricators, a by-pass valve allows for circulating and heating the cylinder oil before starting the engine under cold engine room conditions. On engines with one lubricator per cylinder, this is done by means of the valve on the cylinderblock intended for emptying the accumulator.

Prior to start-up, the cylinders can be pre-lubricated and, during the running-in period, the operator can choose to increase the lubricating oil feed rate to a max. setting of 200%.

System control units

The cylinder lubrication system is controlled by the Master Control Unit (MCU) which calculates the injection frequency on the basis of the engine-speed signal given by the tacho signal (ZE) and the fuel index.

Lubricating control functions such as ‘mep dependent’ and ‘load change dependent’ are all incorporated in the MAN B&W Alpha cylinder lubrication system.

The MAN B&W Alpha Cylinder Lubricator is preferably to be controlled in accordance with the Alpha Adaptive Cylinder oil Control (Alpha ACC) feed rate system. The Alpha ACC is explained in the following page.

The MCU is equipped with a Backup Control Unit (BCU) which, if the MCU malfunctions, activates an alarm and takes control automatically or manually, via a Switch Board Unit (SBU), Fig. 9.02.04.

The MCU, BCU and SBU together comprise the Alpha Cylinder Lubricator Control Unit (ALCU) in shape of a single steel cabinet which is, as standard, located in the Engine Control Room. Fig. 9.02.05 shows the wiring diagram for the MAN B&W Alpha Cylinder Lubrication System.

The yard supply should be according to the items shown in Fig. 9.02.02 within the broken line.
Alpha Adaptive Cylinder oil Control (Alpha ACC)

It is a well-known fact that the actual need for cylinder oil quantity varies with the operational conditions such as load and fuel oil quality. Consequently, in order to perform the optimal lubrication – cost-effectively as well as technically – the cylinder lubricating oil dosage should follow such operational variations accordingly.

The Alpha lubricating system offers the possibility of saving a considerable amount of cylinder lubricating oil per year and, at the same time, to obtain a safer and more predictable cylinder condition.

The name of the algorithm which controls the cylinder oil dosage proportional to the sulphur content in the fuel is Alpha Adaptive Cylinder oil Control, Alpha ACC.

Working Principle

The basic feed rate control should be adjusted in relation to the actual fuel quality and amount being burnt at any given time. The sulphur percentage is a good indicator in relation to wear, and an oil dosage proportional to the sulphur level will give the best overall cylinder condition.

The following two criteria determine the control:

- The cylinder oil dosage shall be proportional to the sulphur percentage in the fuel
- The cylinder oil dosage shall be proportional to the engine load (i.e. the amount of fuel entering the cylinders).

The implementation of the above two criteria will lead to an optimal cylinder oil dosage, proportional to the amount of sulphur entering the cylinders.

Safe and very lubricating-economical control after running-in is obtained with a basic setting according to the formula:

\[\text{Basic lubricating oil setting} = 0.26 \text{ g/kWh} \times S\% \]

with a minimum setting of 0.60 g/kWh, i.e. the setting should be kept constant from about 2.3% sulphur and downwards.

Due to the sulphur dependency, the average cylinder oil dosages rely on the sulphur distribution in worldwide fuel bunkers. Based on deliveries all over the world, the resulting yearly specific cylinder oil dosage is close to 0.7 g/kWh.
Pump Station and MAN B&W Alpha Cylinder Lubricators on Engine

The letters refer to list of 'Counterflanges'
The item No. refer to 'Guidance values Automation'

Fig. 9.02.02: Cylinder lubricating oil supply system for two different BN oils

The letters refer to list of 'Counterflanges'
The item No. refer to 'Guidance values Automation'

Fig. 9.02.03: MAN B&W Alpha cylinder lubricators with piping and instrumentation on engine

#) If pump station is placed on engine
 *) If pump station is placed in engine room
 1) If required by the shipowner

#) In case of COLD engine room conditions, open the valve
to circulate and heat up the cylinder oil. The valve is then
to be closed before starting.
Lubricator control system

The external electrical system must be capable of providing the MCU and BCU with an un-interruptible supply of 24 Volt DC power.

The MAN B&W Alpha Cylinder Lubricator System is equipped with the following (Normally Closed) alarms:

- MCU fail
- MCU power fail
- MCU common alarm
- BCU in control
- BCU fail
- BCU power fail

and slow down (Normally Open) for:

- Electronic cylinder lubricator system

The system has a connection for coupling it to a computer system or a Display Unit (HMI panel) so that engine speed, fuel index, injection frequency, alarms, etc. can be monitored.

The HMI panel for mounting in Engine Control Room (option: 4 42 660) or on the engine (option: 4 42 160) can be delivered separately.

For the actual number of cylinder lubrication points on the specific engine see Fig. 9.02.03

Fig. 9.02.04: Control of the MAN B&W Alpha Cylinder Lubrication System, one lubricator per cylinder
Fig. 9.02.05: Wiring diagram for MAN B&W Alpha Cylinder Lubrication System, one lubricators per cylinder
Mechanical Cylinder Lubricators

Mechanical cylinder lubricator(s), can be mounted on the fore end of the engine, the size of which will decide the number of lubricators needed. If driven by the engine in sync with the crankshaft movement, the lubricators could deliver timed injection of the cylinder lubrication oil.

The lubricator(s) should have a built-in capability for adjustment of the oil quantity and be provided with a sight glass for each lubricating point.

The lubricators should be fitted with:
- Electric heating coils
- Low flow and low level alarms.

In the ‘Engine Speed Dependent’ design, the lubricators could deliver timed injection of the cylinder lubrication oil.

Mainly for plants with controllable pitch propeller, the lubricators could, alternatively, be fitted with a mechanical lubrication system which controls the dosage in proportion to the Mean Effective Pressure (MEP).

An ‘Engine Speed Dependent’ as well as a ‘MEP Dependent’ mechanical lubricator could be equipped with a ‘Load Change Dependent’ system, by which the cylinder feed oil rate is automatically increased during starting, manoeuvring and, preferably, during sudden load changes, see Fig. 9.03.02.

In that case, the signal for the ‘Load Change Dependent’ system comes from the electronic governor.

The letters refer to list of ‘Counterflanges’
The piping is delivered with and fitted onto the engine.

Fig 9.03.01: Piping and instrumentation for a mechanical cylinder lubricator

Fig 9.03.02: Load change dependent mechanical lubricator
Cylinder Lubricating Oil Supply System

The letters refer to list of ‘Counterflanges’

Fig. 9.03.03: Cylinder lubricating oil supply system for two different BN cylinder oils, for mechanical lubricators
Piston Rod Stuffing
Box Drain Oil
Stuffing Box Drain Oil System

For engines running on heavy fuel, it is important that the oil drained from the piston rod stuffing boxes is not led directly into the system oil, as the oil drained from the stuffing box is mixed with sludge from the scavenge air space.

The performance of the piston rod stuffing box on the engines has proved to be very efficient, primarily because the hardened piston rod allows a higher scraper ring pressure.

The amount of drain oil from the stuffing boxes is about 5 - 10 litres/24 hours per cylinder during normal service. In the running-in period, it can be higher.

The relatively small amount of drain oil is led to the general oily waste drain tank or is burnt in the incinerator, Fig. 10.01.01.

Fig. 10.01.01: Stuffing box drain oil system
Central Cooling Water System
Central Cooling Water System

The water cooling can be arranged in several configurations, the most common system choice being a Central cooling water system.

Advantages of the central cooling system:

- Only one heat exchanger cooled by seawater, and thus, only one exchanger to be overhauled
- All other heat exchangers are freshwater cooled and can, therefore, be made of a less expensive material
- Few non-corrosive pipes to be installed
- Reduced maintenance of coolers and components
- Increased heat utilisation.

Disadvantages of the central cooling system:

- Three sets of cooling water pumps (seawater, central water and jacket water.
- Higher first cost.

For information on the alternative Seawater Cooling System, see Chapter 12.

An arrangement common for the main engine and MAN Diesel auxiliary engines is available on request.

For further information about common cooling water system for main engines and auxiliary engines please refer to our publication:

Uni-concept Auxiliary Systems for Two-stroke Main

The publication is available at www.mandiesel.com under ‘Quicklinks’ → ‘Technical Papers’
Central Cooling Water System

The central cooling water system is characterised by having only one heat exchanger cooled by seawater, and by the other coolers, including the jacket water cooler, being cooled by central cooling water.

In order to prevent too high a scavenge air temperature, the cooling water design temperature in the central cooling water system is normally 36 °C, corresponding to a maximum seawater temperature of 32 °C.

Our recommendation of keeping the cooling water inlet temperature to the main engine scavenge air cooler as low as possible also applies to the central cooling system. This means that the temperature control valve in the central cooling water circuit is to be set to minimum 10 °C, whereby the temperature follows the outboard seawater temperature when central cooling water temperature exceeds 10 °C.

For external pipe connections, we prescribe the following maximum water velocities:

- Jacket water: 3.0 m/s
- Central cooling water: 3.0 m/s
- Seawater: 3.0 m/s

Fig. 11.02.01: Central cooling water system
Components for Central Cooling Water System

Seawater cooling pumps

The pumps are to be of the centrifugal type.

Seawater flow.. see ‘List of capacities’
Pump head..2.5 bar
Test pressure.. according to class rules
Working temperature, normal0-32 °C
Working temperature maximum 50 °C

The capacity is to be within a tolerance of 0% to +10%.

The differential pressure of the pumps is to be determined on the basis of the total actual pressure drop across the cooling water system.

Central cooler

The cooler is to be of the shell and tube or plate heat exchanger type, made of seawater resistant material.

Heat dissipation...................................... see ‘List of capacities’
Central cooling water flow see ‘List of capacities’
Central cooling water temperature, outlet.....36 °C
Pressure drop on central cooling side........ max. 0.2 bar
Seawater flow... see ‘List of capacities’
Seawater temperature, inlet 32 °C
Pressure drop on seawater side............... maximum 0.2 bar

The pressure drop may be larger, depending on the actual cooler design.

The heat dissipation and the seawater flow figures are based on MCR output at tropical conditions, i.e. a seawater temperature of 32 °C and an ambient air temperature of 45 °C.

Overload running at tropical conditions will slightly increase the temperature level in the cooling system, and will also slightly influence the engine performance.

Central cooling water pumps

The pumps are to be of the centrifugal type.

Central cooling water flow.............. see ‘List of capacities’
Pump head..2.5 bar
Delivery pressure depends on location of expansion tank
Test pressure.. according to class rules
Working temperature80 °C
Design temperature 100 °C

The flow capacity is to be within a tolerance of 0% to +10%.

The list of capacities covers the main engine only. The differential pressure provided by the pumps is to be determined on the basis of the total actual pressure drop across the cooling water system.

Central cooling water thermostatic valve

The low temperature cooling system is to be equipped with a three-way valve, mounted as a mixing valve, which by-passes all or part of the fresh water around the central cooler.

The sensor is to be located at the outlet pipe from the thermostatic valve and is set so as to keep a temperature level of minimum 10 °C.
Jacket water system

Due to the central cooler the cooling water inlet temperature is about 4 °C higher for this system compared to the seawater cooling system. The input data are therefore different for the scavenge air cooler, the lube oil cooler and the jacket water cooler.

The heat dissipation and the central cooling water flow figures are based on an MCR output at tropical conditions, i.e. a maximum seawater temperature of 32 °C and an ambient air temperature of 45 °C.

Jacket water cooling pump

The pumps are to be of the centrifugal type.

Jacket water flow see ‘List of capacities’

Pump head ... 3.0 bar

Delivery pressure depends on location of expansion tank

Test pressure according to class rules

Working temperature 80 °C

Design temperature 100 °C

The flow capacity is to be within a tolerance of 0% to +10%.

The stated of capacities cover the main engine only. The pump head of the pumps is to be determined on the basis of the total actual pressure drop across the cooling water system.

Scavenge air cooler

The scavenge air cooler is an integrated part of the main engine.

Heat dissipation see ‘List of capacities’

Central cooling water flow see ‘List of capacities’

Central cooling temperature, inlet 36 °C

Pressure drop on FW-LT water side approx. 0.5 bar

Lubricating oil cooler

See chapter 8 ‘Lubricating Oil’.

Jacket water cooler

The cooler is to be of the shell and tube or plate heat exchanger type.

Heat dissipation see ‘List of capacities’

Jacket water flow see ‘List of capacities’

Jacket water temperature, inlet 80 °C

Pressure drop on jacket water side max. 0.2 bar

Central cooling water flow see ‘List of capacities’

Central cooling water temperature, inlet approx. 42 °C

Pressure drop on Central cooling water side max. 0.2 bar

The other data for the jacket cooling water system can be found in chapter 12.

For further information about a common cooling water system for main engines and MAN Diesel auxiliary engines, please refer to our publication:

Uni-concept Auxiliary Systems for Two-stroke Main

The publication is available at www.mandiesel.com under ‘Quicklinks’ → ‘Technical Papers’
Seawater Cooling System
Seawater Systems

The water cooling can be arranged in several configurations, the most simple system choices being seawater and central cooling water system:

- A seawater cooling system and a jacket cooling water system

- The advantages of the seawater cooling system are mainly related to first cost, viz:
 - Only two sets of cooling water pumps (seawater and jacket water)
 - Simple installation with few piping systems.

Whereas the disadvantages are:

- Seawater to all coolers and thereby higher maintenance cost

- Expensive seawater piping of non-corrosive materials such as galvanised steel pipes or Cu-Ni pipes.
Seawater Cooling System

The seawater cooling system is used for cooling, the main engine lubricating oil cooler, the jacket water cooler and the scavenge air cooler, see Fig. 12.02.01.

The lubricating oil cooler for a PTO step-up gear should be connected in parallel with the other coolers. The capacity of the seawater pump is based on the outlet temperature of the seawater being maximum 50 °C after passing through the coolers – with an inlet temperature of maximum 32 °C (tropical conditions), i.e. a maximum temperature increase of 18 °C.

The inter-related positioning of the coolers in the system serves to achieve:

- The lowest possible cooling water inlet temperature to the lubricating oil cooler in order to obtain the cheapest cooler. On the other hand, in order to prevent the lubricating oil from stiffening in cold services, the inlet cooling water temperature should not be lower than 10 °C.
- The lowest possible cooling water inlet temperature to the scavenge air cooler, in order to keep the fuel oil consumption as low as possible.

The valves located in the system fitted to adjust the distribution of cooling water flow are to be provided with graduated scales.

Fig. 12.02.01: Seawater cooling system
Seawater Cooling Pipes

The letters refer to list of ‘Counterflanges’
The item No. refer to ‘Guidance values automation’

Fig. 12.03.01: Seawater cooling pipes for engines with one turbochargers
Components for Seawater Cooling System

Seawater cooling pump

The pumps are to be of the centrifugal type.

Seawater flow see ‘List of capacities’
Pump head 2.5 bar
Test pressure according to class rule
Working temperature maximum 50 °C

The capacity must be fulfilled with a tolerance of between 0% to +10% and covers the cooling of the main engine only.

Lubricating oil cooler

See chapter 8 ‘Lubricating Oil’.

Jacket water cooler

The cooler is to be of the shell and tube or plate heat exchanger type, made of seawater resistant material.

Heat dissipation see ‘List of capacities’
Jacket water flow see ‘List of capacities’
Jacket water temperature, inlet 80 °C
Pressure drop on jacket water side maximum 0.2 bar
Seawater flow see ‘List of capacities’
Seawater temperature, inlet 38 °C
Pressure drop on seawater side maximum 0.2 bar

The heat dissipation and the seawater flow are based on an MCR output at tropical conditions, i.e. seawater temperature of 32 °C and an ambient air temperature of 45 °C.

Scavenge air cooler

The scavenge air cooler is an integrated part of the main engine.

Heat dissipation see ‘List of capacities’
Seawater flow see ‘List of capacities’
Seawater temperature, for seawater cooling inlet, max. 32 °C
Pressure drop on cooling water side between 0.1 and 0.5 bar

The heat dissipation and the seawater flow are based on an MCR output at tropical conditions, i.e. seawater temperature of 32 °C and an ambient air temperature of 45 °C.

Seawater thermostatic valve

The temperature control valve is a three-way valve which can recirculate all or part of the seawater to the pump’s suction side. The sensor is to be located at the seawater inlet to the lubricating oil cooler, and the temperature level must be a minimum of +10 °C.

Seawater flow see ‘List of capacities’
Temperature range, adjustable within +5 to +32 °C
Jacket Cooling Water System

The jacket cooling water system is used for cooling the cylinder liners, cylinder covers and exhaust valves of the main engine and heating of the fuel oil drain pipes, see Fig. 12.05.01.

The jacket water pump) draws water from the jacket water cooler outlet and delivers it to the engine.

At the inlet to the jacket water cooler there is a thermostatically controlled regulating valve, with a sensor at the engine cooling water outlet, which keeps the main engine cooling water outlet at a temperature of 80 °C.

The engine jacket water must be carefully treated, maintained and monitored so as to avoid corrosion, corrosion fatigue, cavitation and scale formation. It is recommended to install a preheater if preheating is not available from the auxiliary engines jacket cooling water system.

The venting pipe in the expansion tank should end just below the lowest water level, and the expansion tank must be located at least 5 m above the engine cooling water outlet pipe.

The freshwater generator, if installed, may be connected to the seawater system if the generator does not have a separate cooling water pump. The generator must be coupled in and out slowly over a period of at least 3 minutes.

For external pipe connections, we prescribe the following maximum water velocities:

Jacket water .. 3.0 m/s
Seawater ... 3.0 m/s

Fig. 12.05.01: Jacket cooling water system

The letters refer to list of ‘Counterflanges’, Fig. 5.10.01

*) Flange BD and the tracing line are not applicable on MC engines type 42 and smaller
Jacket Cooling Water Pipes

The letters refer to list of ‘Counterflanges’
The item No. refer to ‘Guidance values automation’

Fig. 12.06.01: Jacket cooling water pipes for engines with MAN Diesel turbochargers, type TCA, and ABB turbochargers, type TPL
Components for Jacket Cooling Water System

Jacket water cooling pump

The pumps are to be of the centrifugal type.

- **Jacket water flow**: see 'List of capacities'
- **Pump head**: 3.0 bar
- **Delivery pressure**: depends on position of expansion tank
- **Test pressure**: according to class rule
- **Working temperature**: 80 °C, max. 100 °C

The capacity must be met at a tolerance of 0% to +10%.

The stated capacities cover the main engine only. The pump head of the pumps is to be determined based on the total actual pressure drop across the cooling water system.

Freshwater generator

If a generator is installed in the ship for production of freshwater by utilizing the heat in the jacket water cooling system it should be noted that the actual available heat in the jacket water system is lower than indicated by the heat dissipation figures given in the 'List of capacities.' This is because the latter figures are used for dimensioning the jacket water cooler and hence incorporate a safety margin which can be needed when the engine is operating under conditions such as, e.g. overload. Normally, this margin is 10% at nominal MCR.

The calculation of the heat actually available at specified MCR for a derated diesel engine is stated in chapter 6 'List of capacities'.

For illustration of installation of fresh water generator see Fig. 12.05.01.

Jacket water thermostatic valve

The temperature control system is equipped with a three-way valve mounted as a diverting valve, which by-pass all or part of the jacket water around the jacket water cooler.

The sensor is to be located at the outlet from the main engine, and the temperature level must be adjustable in the range of 70-90 °C.

Jacket water preheater

When a preheater, see Fig. 12.05.01, is installed in the jacket cooling water system, its water flow, and thus the preheater pump capacity, should be about 10% of the jacket water main pump capacity.

Based on experience, it is recommended that the pressure drop across the preheater should be approx. 0.2 bar. The preheater pump and main pump should be electrically interlocked to avoid the risk of simultaneous operation.

The preheater capacity depends on the required preheating time and the required temperature increase of the engine jacket water. The temperature and time relations are shown in Fig. 12.08.01.

In general, a temperature increase of about 35 °C (from 15 °C to 50 °C) is required, and a preheating time of 12 hours requires a preheater capacity of about 1% of the engine's nominal MCR power.

Deaerating tank

Design and dimensions of the deaerating tank are shown in Fig. 12.07.01 'Deaerating tank' and the corresponding alarm device is shown in Fig. 12.07.02 'Deaerating tank, alarm device'.

Expansion tank

The total expansion tank volume has to be approximately 10% of the total jacket cooling water amount in the system.

Fresh water treatment

The MAN Diesel recommendations for treatment of the jacket water/freshwater are available on request.
Deaerating tank

Deaerating tank dimensions

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tank size</td>
<td>0.05 m³</td>
</tr>
<tr>
<td>Max. jacket water capacity</td>
<td>120 m³/h</td>
</tr>
<tr>
<td>Max. nominal diameter</td>
<td>125</td>
</tr>
<tr>
<td>A</td>
<td>600</td>
</tr>
<tr>
<td>B</td>
<td>125</td>
</tr>
<tr>
<td>C</td>
<td>5</td>
</tr>
<tr>
<td>D</td>
<td>150</td>
</tr>
<tr>
<td>E</td>
<td>300</td>
</tr>
<tr>
<td>F</td>
<td>910</td>
</tr>
<tr>
<td>G</td>
<td>250</td>
</tr>
<tr>
<td>øH</td>
<td>300</td>
</tr>
<tr>
<td>øI</td>
<td>320</td>
</tr>
<tr>
<td>øJ</td>
<td>ND 50</td>
</tr>
<tr>
<td>øK</td>
<td>ND 32</td>
</tr>
</tbody>
</table>

ND: Nominal diameter

Working pressure is according to actual piping arrangement.

In order not to impede the rotation of water, the pipe connection must end flush with the tank, so that no internal edges are protruding.

Fig. 12.07.01: Deaerating tank, option: 4 46 640

Fig. 12.07.02: Deaerating tank, alarm device, option: 4 46 645
Temperature at Start of Engine

In order to protect the engine, some minimum temperature restrictions have to be considered before starting the engine and, in order to avoid corrosive attacks on the cylinder liners during starting.

Normal start of engine

Normally, a minimum engine jacket water temperature of 50 °C is recommended before the engine is started and run up gradually to 90% of specified MCR speed.

For running between 90% and 100% of specified MCR speed, it is recommended that the load be increased slowly – i.e. over a period of 30 minutes.

Start of cold engine

In exceptional circumstances where it is not possible to comply with the above-mentioned recommendation, a minimum of 20 °C can be accepted before the engine is started and run up slowly to 90% of specified MCR speed.

However, before exceeding 90% specified MCR speed, a minimum engine temperature of 50 °C should be obtained and, increased slowly – i.e. over a period of at least 30 minutes.

The time period required for increasing the jacket water temperature from 20 °C to 50 °C will depend on the amount of water in the jacket cooling water system, and the engine load.

Note:
The above considerations are based on the assumption that the engine has already been well run-in.

Preheating of diesel engine

Preheating during standstill periods

During short stays in port (i.e. less than 4-5 days), it is recommended that the engine is kept preheated, the purpose being to prevent temperature variation in the engine structure and corresponding variation in thermal expansions and possible leakages.

The jacket cooling water outlet temperature should be kept as high as possible and should – before starting-up – be increased to at least 50 °C, either by means of cooling water from the auxiliary engines, or by means of a built-in preheater in the jacket cooling water system, or a combination.
Starting and Control Air
Starting and Control Air Systems

The starting air of 30 bar is supplied by the starting air compressors to the starting air receivers and from these to the main engine inlet 'A'.

Through a reduction station, filtered compressed air at 7 bar is supplied to the engine as:

- Control air for manoeuvring system and for exhaust valve air springs, through engine inlet 'B'.
- Safety air for emergency stop, through inlet 'C'.

Through a reduction valve, compressed air is supplied at 10 bar to ‘AP’ for turbocharger cleaning (soft blast), and a minor volume used for the fuel valve testing unit.

Please note that the air consumption for control air, safety air, turbocharger cleaning and for fuel valve testing unit are momentary requirements of the consumers.

The components of the starting and control air systems are further described in Section 13.02.

For information about a common starting air system for main engines and MAN Diesel auxiliary engines, please refer to our publication:

Uni-concept Auxiliary Systems for Two-stroke Main

The publication is available at www.mandiesel.com under ‘Quicklinks’ → ‘Technical Papers’.

The letters refer to list of ‘Counterflanges’

*) Pipe a nominal dimension: DN100 mm

Fig. 13.01.01: Starting and control air systems
Components for Starting Air System

Starting air compressors

The starting air compressors are to be of the water-cooled, two-stage type with intercooling.

More than two compressors may be installed to supply the total capacity stated.

Air intake quantity:
Reversible engine, for 12 starts see ‘List of capacities’
Non-reversible engine, for 6 starts see ‘List of capacities’
Delivery pressure .. 30 bar

Starting air receivers

The starting air receivers shall be provided with man holes and flanges for pipe connections.

The volume of the two receivers is:
Reversible engine, for 12 starts see ‘List of capacities’ *
Non-reversible engine, for 6 starts see ‘List of capacities’ *
Working pressure ... 30 bar
Test pressure .. according to class rule

* The volume stated is at 25 °C and 1,000 mbar

Reduction station for control and safety air

In normal operating, each of the two lines supplies one engine inlet. During maintenance, three isolating valves in the reduction station allow one of the two lines to be shut down while the other line supplies both engine inlets, see Fig. 13.01.01.

Reduction from 30-10 bar to 7 bar (Tolerance ±10%)
Flow rate, free air 2,100 Normal liters/min equal to 0.035 m³/s
Filter, fineness 40 µm

Reduction valve for turbocharger cleaning etc

Reduction from 30-10 bar to 7 bar (Tolerance ±10%)
Flow rate, free air 2,600 Normal liters/min equal to 0.043 m³/s

The consumption of compressed air for control air, exhaust valve air springs and safety air as well as air for turbocharger cleaning and fuel valve testing is covered by the capacities stated for air receivers and compressors in the list of capacities.

Starting and control air pipes

The piping delivered with and fitted onto the main engine is shown in the following figures in Section 13.03:

Fig. 13.03.01 Starting air pipes
Fig. 13.03.02 Air spring pipes, exhaust valves

Turning gear

The turning wheel has cylindrical teeth and is fitted to the thrust shaft. The turning wheel is driven by a pinion on the terminal shaft of the turning gear, which is mounted on the bedplate.

Engagement and disengagement of the turning gear is effected by displacing the pinion and terminal shaft axially. To prevent the main engine from starting when the turning gear is engaged, the turning gear is equipped with a safety arrangement which interlocks with the starting air system.

The turning gear is driven by an electric motor with a built-in gear and brake. Key specifications of the electric motor and brake are stated in Section 13.04.
Starting and Control Air Pipes

The starting air pipes, Fig. 13.03.01a and b, contain a main starting valve (a ball valve with actuator), a non-return valve, starting air distributor and starting valves.

The main starting valve is combined with the manoeuvring system, which controls the start of the engine. Slow turning before start of engine is an option: 4 50 140 and is recommended by MAN Diesel, see section 6.01.

The starting air distributor regulates the supply of control air to the starting valves in accordance with the correct firing sequence.

Please note that the air consumption for control air, turbocharger cleaning, sealing air for exhaust valve and for fuel valve testing unit are momentary requirements of the consumers.

For information about a common starting air system for main engines and auxiliary engines, please refer to the Engine Selection Guide or to our publication:

Uni-concept Auxiliary Systems for Two-stroke Main

The publication is available at www.mandiesel.com under ‘Quicklinks’ → ‘Technical Papers’
Exhaust Valve Air Spring and Sealing Air Pipes

The exhaust valve is opened hydraulically, and the closing force is provided by an ‘air spring’ which leaves the valve spindle free to rotate. The compressed air is taken from the manoeuvring air system.

Fig. 13.03.02: Air spring and sealing air pipes for exhaust valves
Electric Motor for Turning Gear

MAN Diesel delivers a turning gear with built-in disc brake, option 40 80 101. Two basic executions are available for power supply frequencies of 60 and 50 Hz respectively. Nominal power and current consumption of the motors are listed below.

Electric motor and brake, voltage............ 3 x 440 V Electric motor and brake, frequency60 Hz Protection, electric motor / brake IP 55 / IP 54 Insulation class ... F

<table>
<thead>
<tr>
<th>Number of cylinders</th>
<th>Electric motor</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5-8</td>
<td>Nominal power, kW</td>
<td>Normal current, A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.6</td>
<td>5.0</td>
<td></td>
</tr>
</tbody>
</table>

Turning gear with electric motor of other protection or insulation classes can be ordered, option 40 80 103. Information about the alternative executions is available on request.

Electric motor and brake, voltage............ 3 x 380 V Electric motor and brake, frequency50 Hz Protection, electric motor / brake IP 55 / IP 54 Insulation class ... F

<table>
<thead>
<tr>
<th>Number of cylinders</th>
<th>Electric motor</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5-8</td>
<td>Nominal power, kW</td>
<td>Normal current, A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td>5.0</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 13.04.01: Electric motor for turning gear, option: 40 80 101
Scavenge Air System

Scavenge air is supplied to the engine by one turbocharger located on either the aft end of the engine, option: 4 59 121, or on the exhaust side, option: 4 59 123.

The compressor of the turbocharger draws air from the engine room, through an air filter, and the compressed air is cooled by the scavenge air cooler. The scavenge air cooler is provided with a water mist catcher, which prevents condensed water from being carried with the air into the scavenge air receiver and to the combustion chamber.

The scavenge air system (see Figs. 14.01.01 and 14.02.01) is an integrated part of the main engine.

The engine power figures and the data in the list of capacities are based on MCR at tropical conditions, i.e. a seawater temperature of 32 °C, or freshwater temperature of 36 °C, and an ambient air inlet temperature of 45 °C.

Fig. 14.01.01: Scavenge Air System
Auxiliary Blowers

The engine is provided with a minimum of two electrically driven auxiliary blowers, the actual number depending on the number of cylinders as well as the turbocharger make and amount. Between the scavenge air cooler and the scavenge air receiver, non-return valves are fitted which close automatically when the auxiliary blowers start supplying the scavenge air.

The auxiliary blowers start operating consecutively before the engine is started and will ensure complete scavenging of the cylinders in the starting phase, thus providing the best conditions for a safe start.

During operation of the engine, the auxiliary blowers will start automatically whenever the engine load is reduced to about 30-40%, and will continue operating until the load again exceeds approximately 40-50%.

Emergency running

If one of the auxiliary blowers is out of function, the other auxiliary blower will function in the system, without any manual adjustment of the valves being necessary.

Scavenge Air Cooler requirements

The data for the scavenge air cooler is specified in the description of the cooling water system chosen.

For further information, please refer to our publication titled: *Influence of Ambient Temperature Conditions*

The publication is available at: www.mandiesel.com under ‘Quicklinks’ → ‘Technical Papers’.

![Auxiliary blowers for scavenge air system](image-url)
Control of the Auxiliary Blowers

The auxiliary blowers are fitted onto the main engine and controlled by a system comprising:

- 1 pc Control Panel
- 1 pc Starter Panel per Auxiliary Blower
- 2 pc Pressure Switches

Referring to the diagram of the auxiliary blower control system, Fig. 14.02.02:

- The Control Panel controls the run/stop signals to all Auxiliary Blower Starter Panels. The Control Panel consists of an operation panel and a terminal row interconnected by a 1,200 mm long wire harness.

- The Auxiliary Blower Starter Panels control and protect the Auxiliary Blowers, one panel with starter per blower. The physical layout and choice of components has to be decided by the manufacturer.

- The pressure switch ‘P’ controls the run/stop signals, while pressure switch ‘B’ is part of the auxiliary blower alarm circuit.

The control panel is yard’s supply. It can be ordered as an option: 4 55 650.

The starter panels with starters for the auxiliary blower motors are not included, they can be ordered as an option: 4 55 653. Heaters for the blower motors are available as an option: 4 55 155.

Fig. 14.02.02: Diagram of auxiliary blower control system
Operation Panel for the Auxiliary Blowers

On the operation panel, three control modes are available to run/stop the blowers:

- **AUTO** – Run/stop is automatically controlled by scavenge air pressure
- **MANUAL** – Start of all blowers in sequence at intervals of 6 sec
- **OFF** – The auxiliary blowers are stopped after a set period of time, 30 sec for instance.

The operation panel and terminal row have to be mounted in the Engine Control Room Manoeuvring Console, see section 16.01.

The control panel for the auxiliary blowers including the operation panel, wiring harness and terminal row is shown in Fig. 14.02.03.

Fig. 14.02.03: Control panel including operation panel, wiring harness and terminal row, option: 4 55 650
Scavenge Air Pipes

The item No. refer to ‘Guidance Values Automation’

Fig. 14.03.01: Scavenge air pipes, turbocharger located on exhaust side.
(Diagram of scavenge air pipes for turbocharger located on aft end is available on request)

The letters refer to list of ‘Counterflanges’

Fig. 14.03.02: Scavenge air space, drain pipes
Electric Motor for Auxiliary Blower

The number of auxiliary blowers in a propulsion plant may vary depending on the actual amount of turbochargers as well as space requirements.

For typical engine configurations, the required power of the auxiliary blowers as well as the installed size of the electric motors are listed in Table 14.04.01a and b.

<table>
<thead>
<tr>
<th>Number of cylinders</th>
<th>Number of auxiliary blowers</th>
<th>Required power/blower kW</th>
<th>Installed power/blower kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2</td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>6</td>
<td>34</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>40</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>48</td>
<td>54</td>
<td></td>
</tr>
</tbody>
</table>

The installed power of the electric motors are based on a voltage supply of 3x440V at 60Hz.

The electric motors are delivered with and fitted onto the engine.

Table 14.04.01a: Electric motor for auxiliary blower, engine with turbocharger located on aft end

<table>
<thead>
<tr>
<th>Number of cylinders</th>
<th>Number of auxiliary blowers</th>
<th>Required power/blower kW</th>
<th>Installed power/blower kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2</td>
<td>33</td>
<td>35</td>
</tr>
<tr>
<td>6</td>
<td>42</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>47</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>52</td>
<td>54</td>
<td></td>
</tr>
</tbody>
</table>

The installed power of the electric motors are based on a voltage supply of 3x440V at 60Hz.

The electric motors are delivered with and fitted onto the engine.

Table 14.04.01b: Electric motor for auxiliary blower, engine with turbocharger located on exhaust side
Scavenge Air Cooler Cleaning System

The air side of the scavenge air cooler can be cleaned by injecting a grease dissolving media through ‘AK’ to a spray pipe arrangement fitted to the air chamber above the air cooler element.

Sludge is drained through ‘AL’ to the bilge tank and the polluted grease dissolvent returns from ‘AM’ through a filter, to the chemical cleaning tank. The cleaning must be carried out while the engine is at standstill. The piping delivered with and fitted on the engine is shown in Fig 14.05.01 ‘Air cooler cleaning pipes’.

Fig. 14.05.01: Air cooler cleaning pipes, shown on engine with turbocharger located on exhaust side

Air cooler cleaning unit, option: 4 55 665

Fig. 14.05.02: Air cooler cleaning system

<table>
<thead>
<tr>
<th>No. of cyl.</th>
<th>Chemical tank capacity</th>
<th>Circulation pump capacity at 3 bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-9</td>
<td>0.3 m³</td>
<td>1 m³/h</td>
</tr>
</tbody>
</table>
Scavenge Air Box Drain System

The scavenge air box is continuously drained through 'AV' to a small pressurised drain tank, from where the sludge is led to the sludge tank. Steam can be applied through 'BV', if required, to facilitate the draining. See Fig. 14.06.01.

The continuous drain from the scavenge air box must not be directly connected to the sludge tank owing to the scavenge air pressure. The pressurised drain tank must be designed to withstand full scavenge air pressure and, if steam is applied, to withstand the steam pressure available.

Drain from water mist catcher

The drain line for the air cooler system is, during running, used as a permanent drain from the air cooler water mist catcher. The water is led through an orifice to prevent major losses of scavenge air. The system is equipped with a drain box with a level switch, indicating any excessive water level.

The system delivered with and fitted on the engine is shown in Fig. 14.03.02 Scavenge air space, drain pipes.

Fig. 14.06.01: Scavenge air box drain system

The letters refer to list of ‘Counterflanges’

<table>
<thead>
<tr>
<th>No. of cylinders</th>
<th>5-6</th>
<th>7-8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain tank capacity</td>
<td>0.4 m³</td>
<td>0.7 m³</td>
</tr>
</tbody>
</table>
Fire Extinguishing System for Scavenge Air Space

Fire in the scavenge air space can be extinguished by steam, this being the basic solution, or, optionally, by water mist or CO2.

The external system, pipe and flange connections are shown in Fig. 14.07.01 and the piping fitted onto the engine in Fig. 14.07.02.

In the Extent of Delivery, the fire extinguishing system for scavenge air space is selected by the fire extinguishing agent:

- basic solution: 4 55 140 Steam
- option: 4 55 142 Water mist
- option: 4 55 143 CO2

The key specifications of the fire extinguishing agents are:

Steam fire extinguishing for scavenge air space
Steam pressure: 3-10 bar
Steam quantity, approx.: 2.2 kg/cyl.

Water mist fire extinguishing for scavenge air space
Freshwater pressure: min. 3.5 bar
Freshwater quantity, approx.: 1.7 kg/cyl.

CO2 fire extinguishing for scavenge air space
CO2 test pressure: 150 bar
CO2 quantity, approx.: 4.3 kg/cyl.

The letters refer to list of 'Counterflanges'

Fig. 14.07.01: Fire extinguishing system for scavenge air space
The letters refer to list of 'Counterflanges'

Fig. 14.07.02: Fire extinguishing pipes in scavenge air space
Exhaust Gas
Exhaust Gas System

The exhaust gas is led from the cylinders to the exhaust gas receiver where the fluctuating pressures from the cylinders are equalised and from where the gas is led further on to the turbocharger at a constant pressure. See fig. 15.01.01.

Compensators are fitted between the exhaust valve housings and the exhaust gas receiver and between the receiver and the turbocharger. A protective grating is placed between the exhaust gas receiver and the turbocharger. The turbocharger is fitted with a pick-up for monitoring and remote indication of the turbocharger speed.

The exhaust gas receiver and the exhaust pipes are provided with insulation, covered by steel plating.

Turbocharger arrangement and cleaning systems

The turbocharger can either be located on the aft end of the engine, option: 4 59 121, or on the exhaust side of the engine, option: 4 59 123.

The engine is designed for the installation of the MAN Diesel turbocharger types TCA (4 59 101), ABB turbocharger type TPL (4 59 102), or MHI turbocharger type MET (4 59 103).

All makes of turbochargers are fitted with an arrangement for water washing of the compressor side, and soft blast cleaning of the turbine side, see Figs. 15.02.02, 15.02.03 and 15.02.04. Washing of the turbine side is only applicable on MAN Diesel and ABB turbochargers.
Exhaust Gas Pipes

Fig. 15.02.01b: Exhaust gas pipes, with turbocharger located on exhaust side of engine, option 4 59 123

The letters refer to ‘List of flanges’
The position numbers refer to ‘List of instruments’
The piping is delivered with and fitted onto the engine

Fig. 15.02.01a: Exhaust gas pipes, with turbocharger located on aft end of engine, option 4 59 121

The letters refer to list of ‘Counterflanges’
The item no. refer to ‘Guidance Values Automation’
Cleaning Systems

Fig. 15.02.02: MAN Diesel TCA turbocharger, water washing of turbine side
Cleaning Systems

Fig. 15.02.03: Water washing of turbine and compressor sides for ABB, TPL turbochargers

Fig. 15.02.04: Soft blast cleaning of turbine side
Exhaust Gas System for Main Engine

At the specified MCR of the engine, the total back-pressure in the exhaust gas system after the turbocharger (as indicated by the static pressure measured in the piping after the turbocharger) must not exceed 350 mm WC (0.035 bar).

In order to have a back-pressure margin for the final system, it is recommended at the design stage to initially use a value of about 300 mm WC (0.030 bar).

The actual back-pressure in the exhaust gas system at specified MCR depends on the gas velocity, i.e. it is proportional to the square of the exhaust gas velocity, and hence inversely proportional to the pipe diameter to the 4th power. It has by now become normal practice in order to avoid too much pressure loss in the pipings to have an exhaust gas velocity at specified MCR of about 35 m/sec, but not higher than 50 m/sec.

For dimensioning of the external exhaust pipe connections, see the exhaust pipe diameters for 35 m/sec, 40 m/sec, 45 m/sec and 50 m/sec respectively, shown in Table 5.07.02.

As long as the total back-pressure of the exhaust gas system (incorporating all resistance losses from pipes and components) complies with the above-mentioned requirements, the pressure losses across each component may be chosen independently, see proposed measuring points (M) in Fig. 15.05.01. The general design guidelines for each component, described below, can be used for guidance purposes at the initial project stage.

Exhaust gas piping system for main engine

The exhaust gas piping system conveys the gas from the outlet of the turbocharger(s) to the atmosphere.

The exhaust piping is shown schematically in Fig. 15.04.01.

The exhaust system for the main engine comprises:

- Exhaust gas pipes
- Exhaust gas boiler
- Silencer
- Spark arrester (if needed)
- Expansion joints (compensators)
- Pipe bracings.

In connection with dimensioning the exhaust gas piping system, the following parameters must be observed:

- Exhaust gas flow rate
- Exhaust gas temperature at turbocharger outlet
- Maximum pressure drop through exhaust gas system
- Maximum noise level at gas outlet to atmosphere
- Maximum force from exhaust piping on turbocharger(s)
- Sufficient axial and lateral elongation ability of expansion joints
- Utilisation of the heat energy of the exhaust gas.

Items that are to be calculated or read from tables are:

- Exhaust gas mass flow rate, temperature and maximum back pressure at turbocharger gas outlet
- Diameter of exhaust gas pipes
- Utilisation of the exhaust gas energy
- Attenuation of noise from the exhaust pipe outlet
- Pressure drop across the exhaust gas system
- Expansion joints.
Components of the Exhaust Gas System

Exhaust gas compensator after turbocharger

When dimensioning the compensator (option: 4 60 610) for the expansion joint on the turbocharger gas outlet transition piece (option: 4 60 601) the exhaust gas piece and components, are to be so arranged that the thermal expansions are absorbed by expansion joints. The heat expansion of the pipes and the components is to be calculated based on a temperature increase from 20 °C to 250 °C. The max. expected vertical, transversal and longitudinal heat expansion of the engine measured at the top of the exhaust gas transition piece of the turbocharger outlet are indicated in Fig. 15.06.01 and Table 15.06.02 as DA, DB and DC.

The movements stated are related to the engine seating, for DC, however, to the engine centre. The figures indicate the axial and the lateral movements related to the orientation of the expansion joints.

The expansion joints are to be chosen with an elasticity that limits the forces and the moments of the exhaust gas outlet flange of the turbocharger as stated for each of the turbocharger makers in Table 15.06.04. The orientation of the maximum permissible forces and moments on the gas outlet flange of the turbocharger is shown in Fig. 15.06.03.

Exhaust gas boiler

Engine plants are usually designed for utilisation of the heat energy of the exhaust gas for steam production or for heating the thermal oil system. The exhaust gas passes an exhaust gas boiler which is usually placed near the engine top or in the funnel.

It should be noted that the exhaust gas temperature and flow rate are influenced by the ambient conditions, for which reason this should be considered when the exhaust gas boiler is planned. At specified MCR, the maximum recommended pressure loss across the exhaust gas boiler is normally 150 mm WC.

This pressure loss depends on the pressure losses in the rest of the system as mentioned above. Therefore, if an exhaust gas silencer/spark arrester is not installed, the acceptable pressure loss across the boiler may be somewhat higher than the max. of 150 mm WC, whereas, if an exhaust gas silencer/spark arrester is installed, it may be necessary to reduce the maximum pressure loss.

The above mentioned pressure loss across the exhaust gas boiler must include the pressure losses from the inlet and outlet transition pieces.
Exhaust gas silencer

The typical octave band sound pressure levels from the diesel engine's exhaust gas system – at a distance of one meter from the top of the exhaust gas uptake – are shown in Fig.15.04.02.

The need for an exhaust gas silencer can be decided based on the requirement of a maximum permissible noise level at a specific position.

The exhaust gas noise data is valid for an exhaust gas system without boiler and silencer, etc.

The noise level is at nominal MCR at a distance of one metre from the exhaust gas pipe outlet edge at an angle of 30° to the gas flow direction.

For each doubling of the distance, the noise level will be reduced by about 6 dB (far-field law).

When the noise level at the exhaust gas outlet to the atmosphere needs to be silenced, a silencer can be placed in the exhaust gas piping system after the exhaust gas boiler.

The exhaust gas silencer is usually of the absorption type and is dimensioned for a gas velocity of approximately 35 m/s through the central tube of the silencer.

An exhaust gas silencer can be designed based on the required damping of noise from the exhaust gas given on the graph.

In the event that an exhaust gas silencer is required – this depends on the actual noise level requirement on the bridge wing, which is normally maximum 60–70 dB(A) – a simple flow silencer of the absorption type is recommended. Depending on the manufacturer, this type of silencer normally has a pressure loss of around 20 mm WC at specified MCR.

Fig. 15.04.02: ISO’s NR curves and typical sound pressure levels from the engine’s exhaust gas system. The noise levels at nominal MCR and a distance of 1 metre from the edge of the exhaust gas pipe opening at an angle of 30 degrees to the gas flow and valid for an exhaust gas system – without boiler and silencer, etc. Data for a specific engine and cylinder no. is available on request.

Spark arrester

To prevent sparks from the exhaust gas being spread over deck houses, a spark arrester can be fitted as the last component in the exhaust gas system.

It should be noted that a spark arrester contributes with a considerable pressure drop, which is often a disadvantage.

It is recommended that the combined pressure loss across the silencer and/or spark arrester should not be allowed to exceed 100 mm WC at specified MCR. This depends, of course, on the pressure loss in the remaining part of the system, thus if no exhaust gas boiler is installed, 200 mm WC might be allowed.
Calculation of Exhaust Gas Back-Pressure

The exhaust gas back pressure after the turbocharger(s) depends on the total pressure drop in the exhaust gas piping system.

The components, exhaust gas boiler, silencer, and spark arrester, if fitted, usually contribute with a major part of the dynamic pressure drop through the entire exhaust gas piping system.

The components mentioned are to be specified so that the sum of the dynamic pressure drop through the different components should, if possible, approach 200 mm WC at an exhaust gas flow volume corresponding to the specified MCR at tropical ambient conditions. Then there will be a pressure drop of 100 mm WC for distribution among the remaining piping system.

Fig. 15.05.01 shows some guidelines regarding resistance coefficients and back-pressure loss calculations which can be used, if the maker’s data for back-pressure is not available at an early stage of the project.

The pressure loss calculations have to be based on the actual exhaust gas amount and temperature valid for specified MCR. Some general formulas and definitions are given in the following.

Exhaust gas velocity (v)

In a pipe with diameter D the exhaust gas velocity is:

\[v = \frac{M}{\rho} \times \frac{4}{\pi \times D^2} \text{ in m/s} \]

Pressure losses in pipes (\(\Delta p\))

For a pipe element, like a bend etc., with the resistance coefficient \(\zeta\), the corresponding pressure loss is:

\[\Delta p = \zeta \times \frac{1}{2} \rho v^2 \times \frac{1}{9.81} \text{ in mm WC} \]

where the expression after \(\zeta\) is the dynamic pressure of the flow in the pipe.

The friction losses in the straight pipes may, as a guidance, be estimated as:

1 mm WC per 1 diameter length

whereas the positive influence of the up-draught in the vertical pipe is normally negligible.

Pressure losses across components (\(\Delta p\))

The pressure loss \(\Delta p\) across silencer, exhaust gas boiler, spark arrester, rain water trap, etc., to be measured/stated as shown in Fig. 15.05.01 (at specified MCR) is normally given by the relevant manufacturer.

Total back-pressure (\(\Delta p_M\))

The total back-pressure, measured/stated as the static pressure in the pipe after the turbocharger, is then:

\[\Delta p_M = \Sigma \Delta p \]

where \(\Delta p\) incorporates all pipe elements and components etc. as described:

\(\Delta p_M\) has to be lower than 350 mm WC.

(At design stage it is recommended to use max. 300 mm WC in order to have some margin for fouling).

Exhaust gas data

M: exhaust gas amount at specified MCR in kg/sec.
T: exhaust gas temperature at specified MCR in °C

Please note that the actual exhaust gas temperature is different before and after the boiler. The exhaust gas data valid after the turbocharger may be found in Chapter 6.

Mass density of exhaust gas (\(\rho\))

\[\rho \equiv 1.293 \times \frac{273}{273 + T} \times 1.015 \text{ in kg/m}^3 \]

The factor 1.015 refers to the average back-pressure of 150 mm WC (0.015 bar) in the exhaust gas system.
Measuring Back Pressure

At any given position in the exhaust gas system, the total pressure of the flow can be divided into dynamic pressure (referring to the gas velocity) and static pressure (referring to the wall pressure, where the gas velocity is zero).

At a given total pressure of the gas flow, the combination of dynamic and static pressure may change, depending on the actual gas velocity. The measurements, in principle, give an indication of the wall pressure, i.e., the static pressure of the gas flow.

It is, therefore, very important that the back pressure measuring points are located on a straight part of the exhaust gas pipe, and at some distance from an 'obstruction', i.e. at a point where the gas flow, and thereby also the static pressure, is stable. Taking measurements, for example, in a transition piece, may lead to an unreliable measurement of the static pressure.

In consideration of the above, therefore, the total back pressure of the system has to be measured after the turbocharger in the circular pipe and not in the transition piece. The same considerations apply to the measuring points before and after the exhaust gas boiler, etc.
Pressure losses and coefficients of resistance in exhaust pipes

Change-over valves

Change-over valve of type with constant cross section

\(\zeta_a = 0.6 \) to 1.2
\(\zeta_b = 1.0 \) to 1.5
\(\zeta_c = 1.5 \) to 2.0

Change-over valve of type with volume

\(\zeta_a = \zeta_b = \) about 2.0

\(\zeta = 0.05 \)

Outlet from top of exhaust gas uptake

Inlet (from turbocharger) \(\zeta = -1.00 \)

\(\zeta \) values:
- \(\zeta = 0.28 \)
- \(\zeta = 0.20 \)
- \(\zeta = 0.17 \)
- \(\zeta = 0.16 \)
- \(\zeta = 0.12 \)
- \(\zeta = 0.11 \)
- \(\zeta = 0.45 \)
- \(\zeta = 0.35 \)
- \(\zeta = 0.30 \)
- \(\zeta = 0.14 \)
- \(\zeta = 1.00 \)

M: Measuring points

Fig. 15.05.01: Pressure losses and coefficients of resistance in exhaust pipes
Forces and Moments at Turbocharger

Turbocharger(s) located on exhaust side

![Diagram of turbocharger](image)

Fig. 15.06.01a: Vectors of thermal expansion at the turbocharger exhaust gas outlet flange, TC on exhaust side

Table 15.06.02a: Max. expected movements of the exhaust gas flange resulting from thermal expansion, TC on exhaust side

<table>
<thead>
<tr>
<th>No. of cylinders</th>
<th>5-8</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbocharger Make</td>
<td>DA mm</td>
<td>DB mm</td>
<td>DC mm</td>
<td>DC mm</td>
<td>DC mm</td>
</tr>
<tr>
<td>MAN Diesel</td>
<td>TCA55</td>
<td>7.1</td>
<td>1.2</td>
<td>1.1</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>TCA66</td>
<td>7.4</td>
<td>1.2</td>
<td>1.1</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>TCA77</td>
<td>8.6</td>
<td>1.2</td>
<td>1.1</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>NA48</td>
<td>7.0</td>
<td>1.2</td>
<td>1.1</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>NA57</td>
<td>7.4</td>
<td>1.1</td>
<td>1.1</td>
<td>1.3</td>
</tr>
<tr>
<td>ABB</td>
<td>TPL73</td>
<td>6.2</td>
<td>1.2</td>
<td>1.1</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>TPL77</td>
<td>6.8</td>
<td>1.2</td>
<td>1.1</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>TPL80</td>
<td>7.4</td>
<td>1.1</td>
<td>1.1</td>
<td>1.3</td>
</tr>
<tr>
<td>MHI</td>
<td>MET53</td>
<td>6.5</td>
<td>1.2</td>
<td>1.1</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>MET66</td>
<td>7.3</td>
<td>1.2</td>
<td>1.1</td>
<td>1.3</td>
</tr>
</tbody>
</table>

DA: Max. movement of the turbocharger flange in the vertical direction
DB: Max. movement of the turbocharger flange in the transversal direction
DC: Max. movement of the turbocharger flange in the longitudinal direction
One turbocharger located on aft end

Fig. 15.06.01b: Vectors of thermal expansion at the turbocharger exhaust gas outlet flange, TC on aft end

<table>
<thead>
<tr>
<th>No. of cylinders</th>
<th>5-8</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbocharger Type</td>
<td>DA (mm)</td>
<td>DC (mm)</td>
<td>DA (mm)</td>
<td>DC (mm)</td>
<td>DA (mm)</td>
</tr>
<tr>
<td>MAN Diesel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCA55</td>
<td>7.1</td>
<td>2.5</td>
<td>2.7</td>
<td>2.8</td>
<td>3.0</td>
</tr>
<tr>
<td>TCA66</td>
<td>7.4</td>
<td>2.5</td>
<td>2.7</td>
<td>2.8</td>
<td>3.0</td>
</tr>
<tr>
<td>TCA77</td>
<td>8.6</td>
<td>2.9</td>
<td>3.1</td>
<td>3.3</td>
<td>3.5</td>
</tr>
<tr>
<td>NA48</td>
<td>7.0</td>
<td>2.5</td>
<td>2.7</td>
<td>2.9</td>
<td>3.1</td>
</tr>
<tr>
<td>NA57</td>
<td>7.4</td>
<td>2.9</td>
<td>3.1</td>
<td>3.3</td>
<td>3.5</td>
</tr>
<tr>
<td>NA70</td>
<td>8.8</td>
<td>3.3</td>
<td>3.5</td>
<td>3.7</td>
<td>3.9</td>
</tr>
<tr>
<td>ABB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPL73</td>
<td>6.2</td>
<td>2.3</td>
<td>2.4</td>
<td>2.6</td>
<td>2.8</td>
</tr>
<tr>
<td>TPL77</td>
<td>6.8</td>
<td>2.5</td>
<td>2.7</td>
<td>2.8</td>
<td>3.0</td>
</tr>
<tr>
<td>TPL80</td>
<td>7.4</td>
<td>2.7</td>
<td>2.9</td>
<td>3.1</td>
<td>3.2</td>
</tr>
<tr>
<td>MHI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MET53</td>
<td>6.5</td>
<td>2.5</td>
<td>2.7</td>
<td>2.8</td>
<td>3.0</td>
</tr>
<tr>
<td>MET66</td>
<td>7.3</td>
<td>2.8</td>
<td>3.0</td>
<td>3.2</td>
<td>3.3</td>
</tr>
</tbody>
</table>

DA: Max. movement of the turbocharger flange in the vertical direction
DC: Max. movement of the turbocharger flange in the longitudinal direction

Table 15.06.02b: Max. expected movements of the exhaust gas flange resulting from thermal expansion, TC on aft end
Table 15.06.04 indicates the maximum permissible forces (F1, F2 and F3) and moments (M1 and M3), on the exhaust gas outlet flange of the turbocharger(s). Reference is made to Fig. 15.06.03.

<table>
<thead>
<tr>
<th>Turbocharger Make</th>
<th>Type</th>
<th>M1 Nm</th>
<th>M3 Nm</th>
<th>F1 N</th>
<th>F2 N</th>
<th>F3 N</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAN Diesel</td>
<td>TCA55</td>
<td>3,400</td>
<td>6,900</td>
<td>9,100</td>
<td>9,100</td>
<td>4,500</td>
</tr>
<tr>
<td></td>
<td>TCA66</td>
<td>3,700</td>
<td>7,500</td>
<td>9,900</td>
<td>9,900</td>
<td>4,900</td>
</tr>
<tr>
<td></td>
<td>TCA77</td>
<td>4,100</td>
<td>8,200</td>
<td>10,900</td>
<td>10,900</td>
<td>5,400</td>
</tr>
<tr>
<td></td>
<td>NA48</td>
<td>3,600</td>
<td>2,400</td>
<td>6,000</td>
<td>6,000</td>
<td>2,400</td>
</tr>
<tr>
<td></td>
<td>NA57</td>
<td>4,300</td>
<td>3,000</td>
<td>7,000</td>
<td>7,000</td>
<td>3,000</td>
</tr>
<tr>
<td></td>
<td>NA70</td>
<td>5,300</td>
<td>3,500</td>
<td>8,800</td>
<td>8,800</td>
<td>3,500</td>
</tr>
<tr>
<td>ABB</td>
<td>TPL73</td>
<td>5,500</td>
<td>5,500</td>
<td>9,500</td>
<td>9,000</td>
<td>9,000</td>
</tr>
<tr>
<td></td>
<td>TPL77</td>
<td>7,700</td>
<td>7,700</td>
<td>11,500</td>
<td>10,000</td>
<td>10,000</td>
</tr>
<tr>
<td></td>
<td>TPL80</td>
<td>11,000</td>
<td>11,000</td>
<td>15,000</td>
<td>13,000</td>
<td>13,000</td>
</tr>
<tr>
<td>MHI</td>
<td>MET53</td>
<td>4,900</td>
<td>2,500</td>
<td>7,300</td>
<td>2,600</td>
<td>2,300</td>
</tr>
<tr>
<td></td>
<td>MET66</td>
<td>6,800</td>
<td>3,400</td>
<td>9,300</td>
<td>3,200</td>
<td>3,000</td>
</tr>
</tbody>
</table>

Table 15.06.04: The max. permissible forces and moments on the turbocharger’s gas outlet flanges
Diameter of Exhaust Gas Pipes

The exhaust gas pipe diameters listed in Table 15.07.02 are based on the exhaust gas flow capacity according to ISO ambient conditions and an exhaust gas temperature of 250 °C.

The exhaust gas velocities and mass flow listed apply to collector pipe D4. The table also lists the diameters of the corresponding exhaust gas pipes D0 for various numbers of turbochargers installed.

![Diagram of exhaust pipe system]
*Fig. 15.07.01a: Exhaust pipe system, with turbocharger located on exhaust side of engine, option: 4 59 123

![Diagram of exhaust pipe system]
*Fig. 15.07.01b: Exhaust pipe system, with single turbocharger located on aft end of engine, option: 4 59 121

<table>
<thead>
<tr>
<th>Gas velocity</th>
<th>Exhaust gas pipe diameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>35 m/s</td>
<td>Gas mass flow</td>
</tr>
<tr>
<td></td>
<td>1 T/C</td>
</tr>
<tr>
<td></td>
<td>2 T/C</td>
</tr>
<tr>
<td></td>
<td>D0</td>
</tr>
<tr>
<td></td>
<td>D4</td>
</tr>
<tr>
<td>kg/s</td>
<td>kg/s</td>
</tr>
<tr>
<td>13.4</td>
<td>15.3</td>
</tr>
<tr>
<td>15.0</td>
<td>17.2</td>
</tr>
<tr>
<td>16.7</td>
<td>19.1</td>
</tr>
<tr>
<td>18.6</td>
<td>21.2</td>
</tr>
<tr>
<td>20.5</td>
<td>23.4</td>
</tr>
<tr>
<td>22.4</td>
<td>25.7</td>
</tr>
<tr>
<td>24.5</td>
<td>28.0</td>
</tr>
<tr>
<td>26.7</td>
<td>30.5</td>
</tr>
<tr>
<td>31.4</td>
<td>35.8</td>
</tr>
</tbody>
</table>

Table 15.07.02: Exhaust gas pipe diameters and exhaust gas mass flow at various velocities
Engine Control System
Engine Control System

The engine is provided with a pneumatic/electric manoeuvring and fuel oil regulating system, which transmits orders from the separate manoeuvring consoles to the engine.

By means of the regulating system it is possible to start, stop, reverse the engine and control the engine speed. The speed setting device on the manoeuvring consoles gives a speed setting signal to the governor, dependent on the desired number of rpm.

At shut-down, the fuel injection is stopped by activating the puncture valves in the fuel pumps, independent of the speed position of the speed setting device.

The layout of the Engine Control System is shown in Fig. 16.01.01 and a diagram of the pneumatic manoeuvring system in Fig. 16.01.02a and b.

Manoeuvring Consoles

The Engine Control System for the MC / MC-C engine is prepared for conventional remote control, having an interface to the Bridge Control (BC) system and the Engine Side Console (ESC).

The main Engine Control Room (ECR) manoeuvring console is to be located in the engine control room. The console with buttons, lamps, etc. recommended by MAN Diesel is shown in Fig. 16.01.07. Components for remote control for a typical installation with bridge control is shown in Fig. 16.01.05.

The layout of the Engine Side Console and instrument panel is shown in Fig. 16.01.06a, b and c. The console and an electronic speed setting device, the governor, are located on the manoeuvring side of the engine.

In the event of breakdown of the normal pneumatic/electric manoeuvring system, the engine can be operated from the Engine Side Console.

Fig. 16.01.01: Engine Control System Layout
Diagram of manoeuvring system

Fig. 16.01.02a: Diagram of manoeuvring system for reversible engine with FPP, slow turning and VIT (Basic for S/K98-80MC/MC-C, optional on S/L70-60 & S50MC-C)
Diagram of manoeuvring system

Fig. 16.01.02b: Diagram of manoeuvring system for reversible engine with FPP and slow turning, no VIT
(Basic for S/L70-60 & 35MC/MC-C as well as S50-26MC/MC-C)
Manoeuvring System on Engine

The basic manoeuvring diagram is applicable for reversible engines, i.e. those with Fixed Pitch Propeller (FPP), and shown in Fig. 16.01.02a and b.

The lever on the Engine Side Console can be set to either Manual or Remote position, see Fig. 16.01.06a, b and c.

In the Manual position the engine is controlled from the Engine Side Console by the push buttons START, STOP, and the AHEAD/ASTERN. The speed is set by the ‘Manual speed setting’ by the handwheel.

In the ‘Remote’ position all signals to the engine are electronic, the START, STOP, AHEAD and ASTERN signals activate the solenoid valves ZV 1137 C, ZV 1136 C, ZV 1141 C and ZV 1142 C respectively, shown in Figs. 16.01.02 and 16.01.05, and the speed setting signal via the electronic governor and the actuator E 1182 C.

The electrical signal comes from the remote control system, i.e. the Bridge Control (BC) console, or from the Engine Control Room (ECR) console.

Shut down system

The engine is stopped by activating the puncture valve located in the fuel pump either at normal stopping or at shut down by activating solenoid valve ZV 1103 C, see Fig. 16.01.02a and b.

Slow turning

The standard manoeuvring system does not feature slow turning before starting, but for Unattended Machinery Spaces (UMS) we strongly recommend the addition of the slow turning device shown in Fig. 16.01.02a and b as well as Fig. 16.01.03, option: 4 50 140.

The slow turning valve diverts the starting air to partially bypass the main starting valve. During slow turning the engine will rotate so slowly that, In the event that liquids have accumulated on the piston top, the engine will stop before any harm occurs.

Low load operation

For operation at low load, a cylinder cut-out system is provided on engine types 98, 90 and 80, option: 4 65 255.

Control System for Plants with CPP
– applicable for engine types 70-26 only

Where a controllable pitch propeller is installed the control system is to be designed in such a way that the operational requirements for the whole plant are fulfilled.

Special attention should be paid to the actual operation mode, e.g. combinator curve with/without constant frequency shaft generator or constant engine speed with a power take off.

The following requirements have to be fulfilled:

• The control system is to be equipped with a load control function limiting the maximum torque (fuel pump index) in relation to the engine speed, in order to prevent the engine from being loaded beyond the limits of the load diagram

• The control system must ensure that the engine load does not increase at a quicker rate than permitted by the scavenge air pressure

• Load changes have to take place in such a way that the governor can keep the engine speed within the required range.

Please contact the engine builder to get specific data.
Sequence Diagram

MAN Diesel's requirements for the control system are indicated graphically in Fig. 16.01.08a, b and c, ‘Sequence diagram’.

The diagram shows the functions as well as the delays which must be considered in respect to starting 'Ahead' and starting 'A stern', as well as for the activation of the slow down and shut down functions.

On the right of the diagram, a situation is shown where the order 'A stern' is over-ridden by an 'Ahead' order – the engine immediately starts 'Ahead' if the engine speed is above the specified starting level.
Starting Air System

Additional components for slow turning are the slow turning valve in bypass and position nos. 28 and 78

The item No. refers to “Guidance values ‘automation’
The letter refers to list of “Counterflanges”
The piping is delivered with and fitted onto the engine

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Qty.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>1</td>
<td>3/4-way solenoid valve</td>
</tr>
<tr>
<td>78</td>
<td>1</td>
<td>Switch, yard’s supply</td>
</tr>
</tbody>
</table>

Fig. 16.01.03: Starting air system, with slow turning, option: 4 50 140
Governor parts and mode of operation

The engine is, as standard, provided with an electronic/mechanical type of fuel pump actuator of a make approved by MAN Diesel.

The speed setting of the actuator is determined by an electronic signal from the electronic governor of a make approved by MAN Diesel. The actuator shaft is connected to the fuel regulating shaft by means of a mechanical linkage.

When selecting the governor, the complexity of the installation has to be considered. We normally distinguish between ‘conventional’ and ‘advanced’ marine installations.

The governor consists of the following elements:

• Actuator
• Revolution transmitter (pick-ups)
• Electronic governor panel
• Power supply unit
• Pressure transmitter for scavenge air.

The actuator, revolution transmitter and the pressure transmitter are mounted on the engine.

The electronic governors must be tailor-made, and the specific layout of the system must be mutually agreed upon by the customer, the governor supplier and the engine builder.

It should be noted that the shut down system, the governor and the remote control system must be compatible if an integrated solution is to be obtained.

The minimum speed is 20–25% of the engines nominal speed when an electronic governor is applied.

Governor for ‘Conventional’ plants

A typical example of a ‘conventional’ marine installation is:

• An engine directly coupled to a fixed pitch propeller.

With a view to such an installations, the engine is, as standard, equipped with a ‘conventional’ electronic governor with actuator of a make approved by MAN Diesel, e.g.:

4 65 170 Woodward
4 65 172 Lyngsø Marine A/S
4 65 174 Kongsberg Maritime Ship Systems A/S
4 65 175 NABCO Ltd.
4 65 177 Siemens.

Governor for ‘Advanced’ plants

For more ‘advanced’ marine installations, such as, for example:

• Plants with flexible coupling in the shafting system
• Geared installations
• Plants with disengageable clutch for disconnecting the propeller
• Plants with shaft generator with great requirement for frequency accuracy.

The electronic governors have to be tailor-made, and the specific layout of the system has to be mutually agreed upon by the customer, the governor supplier and the engine builder.

It should be noted that the shut down system, the governor and the remote control system must be compatible if an integrated solution is to be obtained.
Governor and remote control components

Fig. 16.01.04: Electronic governor

Fig. 16.01.05: Components for remote control of reversible engine with FPP with bridge control
Engine Side Control Console with diagram

Fig. 16.01.06a: Engine Side Control console, for reversible engine

Fig. 16.01.06b: Diagram of Engine Side Control console

* Terminal 7 only connected on engines with VIT type fuel pumps
Engine Side Control Console and Instrument Panel

Components included for:

Fixed pitch propeller:
- Remote control – manual engine side control
- Ahead – Astern handle
- Start button
- Stop button

The instrument panel includes:

For reversible engine:
- Tachometer for engine
- Indication for engine side control
- Indication for control room control (remote)
- Indication for bridge control (remote)
- Indication for ‘Ahead’
- Indication for ‘Astern’
- Indication for auxiliary blower running
- Indication and buzzer for wrong way alarm
- Indication for turning gear engaged
- Indication for ‘Shut down’
- Push button for canceling ‘Shut down’, with indication

Fig. 16.01.06c: Engine Side Control console and instrument panel
Engine Control Room Console

1 Free space for mounting of safety panel
 Engine builder’s supply
2 Tachometer(s) for turbocharger(s)
3 Indication lamps for:
 Ahead
 Astern
 Engine Side Control
 Control Room Control
 Wrong way alarm
 Turning gear engaged
 Main starting valve in service
 Main starting valve in blocked mode
 Remote control
 Shut down
 Lamp test
4 Tachometer for main engine
5 Revolution counter
6 Switch and lamps for auxiliary blowers
7 Free spares for mounting of bridge control equipment for main engine
8 Switch and lamp for cancelling of limiters for governor
9 Engine control handle, option: 4 65 625 from engine maker
 * 10 Pressure gauges for:
 Scavenge air
 Lubricating oil, main engine
 Cooling oil, main engine
 Jacket cooling water
 Sea cooling water
 Lubricating oil, camshaft
 Fuel oil before filter
 Fuel oil after filter
 Starting air
 Control air supply
 * 10 Thermometer:
 Jacket cooling water
 Lubricating oil water

Note: If an axial vibration monitor is ordered (option: 4 31 116) the manoeuvring console has to be extended by a remote alarm/slow down indication lamp.

* These instruments have to be ordered as option: 4 75 645 and the corresponding analogue sensors on the engine as option: 4 75 128.

Fig. 16.01.07: Instruments and pneumatic components for Engine Control Room console, yard’s supply
Sequence diagram for engines with Fixed Pitch Propeller

Fig. 16.01.08a: Sequence diagram for fixed pitch propeller, MC/MC-C types 50-26
Controllable Pitch Propeller

This section is available on request
Engine Control System Interface to Surrounding Systems

To support the navigator, the vessels are equipped with a ship control system, which includes subsystems to supervise and protect the main propulsion engine.

The monitoring systems and instrumentation are explained in detail in Chapter 18.

Alarm system

The alarm system has no direct effect on the Engine Control System (ECS). The alarm alerts the operator of an abnormal condition.

The alarm system is an independent system, in general covering more than the main engine itself, and its task is to monitor the service condition and to activate the alarms if a normal service limit is exceeded.

The signals from the alarm sensors can be used for the slow down function as well as for remote indication.

Slow down system

The engine safety system is an independent system with its respective sensors on the main engine, fulfilling the requirements of the respective classification society and MAN Diesel.

Safety system

The engine safety system is an independent system with its respective sensors on the main engine, fulfilling the requirements of the respective classification society and MAN Diesel.

If a critical value is reached for one of the measuring points, the input signal from the safety system must cause either a cancellable or a non-cancellable shut down signal to the ECS.

The safety system is included as standard in the extent of delivery.

Telegraph system

The telegraph system is an independent system.

This system enables the navigator to transfer the commands of engine speed and direction of rotation from the Bridge, the engine control room or the Engine Side Console (ESO).

Remote Control system

The remote control system normally has two alternative control stations:

- the Bridge Control console
- the Engine Control Room console

The remote control system is to be delivered by an approved supplier.

Power Management system

The system handles the supply of electrical power onboard, i.e. the starting and stopping of the generating sets as well as the activation / deactivation of the main engine Shaft Generator (SG), if fitted.

The normal function involves starting, synchronising, phasing-in, transfer of electrical load and stopping of the generators based on the electrical load of the grid on board.

The activation / deactivation of the SG is to be done within the engine speed range which fulfils the specified limits of the electrical frequency.
Auxiliary equipment system

The input signals for ‘Auxiliary system ready’ are given partly based on the status for:

- fuel oil system
- lube oil system
- cooling water systems

and partly from the ECS itself:

- turning gear disengaged
- main starting valve ‘open’
- control air valve for sealing air ‘open’
- control air valve for air spring ‘open’
- auxiliary blowers running
- hydraulic power supply ready.

Engine monitoring

In order to assist the engineer in running the diesel engine at its optimum performance, a MAN Diesel's PMI system, type PT/S off-line or on-line could be applied as an option.

The MAN Diesel’s PMI system, type PT/S off-line monitors engine parameters such as:

- cylinder pressure
- fuel oil injection pressure
- scavenge air pressure
- engine speed.

This and other engine monitoring systems are further explained in Chapter 18 in this Project Guide.

Instrumentation

Chapter 18 includes lists of instrumentation for:

- The CoCos-EDS on-line system
- The class requirements and MAN Diesel's requirements for alarms, slow down and shut down for Unattended Machinery Spaces.
Vibration Aspects

The vibration characteristics of the two-stroke low speed diesel engines can for practical purposes be split up into four categories, and if the adequate countermeasures are considered from the early project stage, the influence of the excitation sources can be minimised or fully compensated.

In general, the marine diesel engine may influence the hull with the following:

• External unbalanced moments
 These can be classified as unbalanced 1st and 2nd order external moments, which need to be considered only for certain cylinder numbers
• Guide force moments
• Axial vibrations in the shaft system
• Torsional vibrations in the shaft system.

The external unbalanced moments and guide force moments are illustrated in Fig. 17.01.01.

In the following, a brief description is given of their origin and of the proper countermeasures needed to render them harmless.

External unbalanced moments

The inertia forces originating from the unbalanced rotating and reciprocating masses of the engine create unbalanced external moments although the external forces are zero.

Of these moments, the 1st order (one cycle per revolution) and the 2nd order (two cycles per revolution) need to be considered for engines with a low number of cylinders. On 7-cylinder engines, also the 4th order external moment may have to be examined. The inertia forces on engines with more than 6 cylinders tend, more or less, to neutralise themselves.

Countermeasures have to be taken if hull resonance occurs in the operating speed range, and if the vibration level leads to higher accelerations and/or velocities than the guidance values given by international standards or recommendations (for instance related to special agreement between shipowner and shipyard). The natural frequency of the hull depends on the hull’s rigidity and distribution of masses, whereas the vibration level at resonance depends mainly on the magnitude of the external moment and the engine’s position in relation to the vibration nodes of the ship.
2nd Order Moments on 5 or 6-cylinder Engines

The 2nd order moment acts only in the vertical direction. Precautions need only to be considered for 5 and 6-cylinder engines in general.

Resonance with the 2nd order moment may occur in the event of hull vibrations with more than 3 nodes. Contrary to the calculation of natural frequency with 2 and 3 nodes, the calculation of the 4 and 5-node natural frequencies for the hull is a rather comprehensive procedure and often not very accurate, despite advanced calculation methods.

A 2nd order moment compensator comprises two counter-rotating masses running at twice the engine speed. 2nd order moment compensators are not included in the basic extent of delivery.

Several solutions are available to cope with the 2nd order moment, as shown in Fig. 17.03.02, out of which the most cost efficient one can be chosen in the individual case, e.g.:

1) No compensators, if considered unnecessary on the basis of natural frequency, nodal point and size of the 2nd order moment.

2) A compensator mounted on the aft end of the engine, driven by the main chain drive, option: 4 31 203 (types 46 and larger).

3) A compensator mounted on the fore end, driven from the crankshaft through a separate chain drive, options: 4 31 213 (types 46 and larger).

4) Compensators on both aft and fore ends, driven from the crankshaft by the main chain drive and a separate chain drive respectively, options 4 31 203 and 4 31 213.

As standard, the compensators reduce the external 2nd order moment to a level as for a 7-cylinder engine or less.
Briefly speaking, solution 1) is applicable if the node is located far from the engine, or the engine is positioned more or less between nodes. Solution 2) or 3) should be considered where one of the engine ends is positioned in a node or close to it, since a compensator is inefficient in a node or close to it and therefore superfluous. Solution 4) should be considered if the engine is positioned over the node.

A decision regarding the vibrational aspects and the possible use of compensators must be taken at the contract stage. If no experience is available from sister ships, which would be the best basis for deciding whether compensators are necessary or not, it is advisable to make calculations to determine which of the solutions should be applied.

Experience with our two-stroke slow speed engines has shown that propulsion plants with small bore engines (engines smaller than 46 types) are less sensitive regarding hull vibrations exited by 2nd order moments than the larger bore engines. Therefore, these engines do not have engine driven 2nd order moment compensators.

Preparation for compensators

If compensator(s) are initially omitted, the engine can be delivered prepared for compensators to be fitted on engine fore end later on, but the decision to prepare or not must be taken at the contract stage, options: 4 31 212 (types 46 and larger). Measurements taken during the sea trial, or later in service and with fully loaded ship, will be able to show if compensator(s) have to be fitted at all.

If no calculations are available at the contract stage, we advise to make preparations for the fitting of a compensator in the steering compartment.
Electric Driven Moment Compensator

If it is decided not to use chain driven moment compensators and, furthermore, not to prepare the main engine for compensators to be fitted later, another solution can be used, if annoying vibrations should occur: An electrically driven moment compensator synchronised to the correct phase relative to the external force or moment can neutralise the excitation.

This type of compensator needs an extra seating fitted, preferably, in the steering gear room where vibratory deflections are largest and the effect of the compensator will therefore be greatest.

The electrically driven compensator will not give rise to distorting stresses in the hull, but it is more expensive than the engine-mounted compensators 2), 3) and 4). It does, however, offer several advantages over the engine mounted solutions:

When placed in the steering gear room, the compensator is not as sensitive to the positioning of the node as the compensators 2) and 3).

The decision whether or not to install compensators can be taken at a much later stage of a project, since no special version of the engine structure has to be ordered for the installation.

No preparation for a later installation nor an extra chain drive for the compensator on the fore end of the engine is required. This saves the cost of such preparation, often left unused.

Compensators could be retrofit, even on ships in service, and also be applied to engines with a higher number of cylinders than is normally considered relevant, if found necessary.

The compensator only needs to be active at speeds critical for the hull girder vibration. Thus, it may be activated or deactivated at specified speeds automatically or manually.

Combinations with and without moment compensators are not required in torsional and axial vibration calculations, since the electrically driven moment compensator is not part of the mass-elastic system of the crankshaft.

Furthermore, by using the compensator as a vibration exciter a ship’s vibration pattern can easily be identified without having the engine running, e.g. on newbuildings at an advanced stage of construction. If it is verified that a ship does not need the compensator, it can be removed and reused on another ship.

It is a condition for the application of the rotating force moment compensator that no annoying longitudinal hull girder vibration modes are excited. Based on our present knowledge, and confirmed by actual vibration measurements onboard a ship, we do not expect such problems.

Fig. 17.03.01: MAN B&W 1st or 2nd order electrically driven moment compensator, separately mounted, option: 4 31 605.
Fig. 17.03.02: Compensation of 2nd order vertical external moments

- **Moment compensator**
 - Aft end, option: 4 31 203

- **Compensating moment**
 - F2C x Lnode outbalances M2V

- **Compensation of 2nd order vertical external moments**

- **Moment compensator**
 - Fore end, option: 4 31 213

- **Compensating moment**
 - F2C x Lnode outbalances M2V

- **Electric driven moment compensator**

- **Centre line crankshaft**

- **3 and 4-node vertical hull girder mode**

- **Compensating moment**
 - F0 x Lnode outbalances M2V
Power Related Unbalance

To evaluate if there is a risk that 1st and 2nd order external moments will excite disturbing hull vibrations, the concept Power Related Unbalance (PRU) can be used as a guidance, see Table 17.04.01 below.

\[
PRU = \frac{\text{External moment}}{\text{Engine power}} \text{ Nm/kW}
\]

With the PRU value, stating the external moment relative to the engine power, it is possible to give an estimate of the risk of hull vibrations for a specific engine.

Based on service experience from a great number of large ships with engines of different types and cylinder numbers, the PRU-values have been classified in four groups as follows:

<table>
<thead>
<tr>
<th>PRU Nm/kW</th>
<th>Need for compensator</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 60</td>
<td>Not relevant</td>
</tr>
<tr>
<td>60 - 120</td>
<td>Unlikely</td>
</tr>
<tr>
<td>120 - 220</td>
<td>Likely</td>
</tr>
<tr>
<td>220 -</td>
<td>Most likely</td>
</tr>
</tbody>
</table>

S50MC6 – 1,430 kW/cyl at 127 r/min

<table>
<thead>
<tr>
<th>PRU acc. to 1st order, Nm/kW</th>
<th>5 cyl.</th>
<th>6 cyl.</th>
<th>7 cyl.</th>
<th>8 cyl.</th>
<th>9 cyl.</th>
<th>10 cyl.</th>
<th>11 cyl.</th>
<th>12 cyl.</th>
<th>14 cyl.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15,3</td>
<td>0,0</td>
<td>6,5</td>
<td>19,1</td>
<td>N.a.</td>
<td>N.a.</td>
<td>N.a.</td>
<td>N.a.</td>
<td>N.a.</td>
</tr>
</tbody>
</table>

| PRU acc. to 2nd order, Nm/kW | 55,2 | 90,1 | 22,4 | 0,0 | N.a. | N.a. | N.a. | N.a. | N.a. |

Based on external moments in layout point L,
N.a. Not applicable

Table 17.04.01: Power Related Unbalance (PRU) values in Nm/kW

Calculation of External Moments

In the table at the end of this chapter, the external moments \(M_i\) are stated at the speed \(n_i\) and MCR rating in point L, of the layout diagram. For other speeds \(n_A\), the corresponding external moments \(M_A\) are calculated by means of the formula:

\[
M_A = M_i \times \left(\frac{n_A}{n_i}\right)^2 \text{ kNm}
\]

(The tolerance on the calculated values is 2.5%).
Guide Force Moments

The so-called guide force moments are caused by the transverse reaction forces acting on the crossheads due to the connecting rod/crankskaft mechanism. These moments may excite engine vibrations, moving the engine top athwartships and causing a rocking (excited by H-moment) or twisting (excited by X-moment) movement of the engine as illustrated in the above figure.

The guide force moments corresponding to the MCR rating (L_8) are stated in Table 7.07.01.

Top bracing

The guide force moments are harmless except when resonance vibrations occur in the engine/double bottom system.

As this system is very difficult to calculate with the necessary accuracy MAN Diesel strongly recommend, as standard, that top bracing is installed between the engine’s upper platform brackets and the casing side.

The vibration level on the engine when installed in the vessel must comply with MAN Diesel vibration units as stated in Fig. 17.05.02.

We recommend using the hydraulic top bracing which allow adjustment to the loading conditions of the ship. Mechanical top bracings with stiff connections are available on request.

With both types of top bracing above-mentioned natural frequency will increase to a level where resonance will occur above the normal engine speed. Details of the top bracings are shown in Chapter 05.

Definition of Guide Force Moments

Over the years it has been discussed how to define the guide force moments. Especially now that complete FEM-models are made to predict hull/engine interaction, the propeller definition of these moments has become increasingly important.

H-type Guide Force Moment (M_{H})

Each cylinder unit produces a force couple consisting of:

1. A force at crankshaft level.

2. Another force at crosshead guide level. The position of the force changes over one revolution as the guide shoe reciprocates on the guide.
Limits valid for single order harmonics

Fig.17.05.02: Vibration limits
As the deflection shape for the H-type is equal for each cylinder the N\(^{th}\) order H-type guide force moment for an N-cylinder engine with regular firing order is:

\[N \times M_{H\text{(one cylinder)}} \]

For modelling purposes the size of the forces in the force couple is:

\[\text{Force} = \frac{M_{H}}{L} \text{[kN]} \]

where L is the distance between crankshaft level and the middle position of the crosshead guide (i.e. the length of the connecting rod.)

As the interaction between engine and hull is at the engine seating and the top bracing positions, this force couple may alternatively be applied in those positions with a vertical distance of (L\(_z\)). Then the force can be calculated as:

\[\text{Force}_{z} = \frac{M_{H}}{L_{z}} \text{[kN]} \]

Any other vertical distance may be applied, so as to accommodate the actual hull (FEM) model.

The force couple may be distributed at any number of points in the longitudinal direction. A reasonable way of dividing the couple is by the number of top bracing and then applying the forces at those points.

\[\text{Force}_{z, \text{one point}} = \frac{\text{Force}_{z, \text{total}}}{N_{\text{top bracing, total}}} \text{[kN]} \]

X-type Guide Force Moment (M\(_x\))

The X-type guide force moment is calculated based on the same force couple as described above. However as the deflection shape is twisting the engine each cylinder unit does not contribute with an equal amount. The centre units do not contribute very much whereas the units at each end contribute much.

A so-called ‘Bi-moment’ can be calculated (Fig. 17.05.02):

\[\text{‘Bi-moment’} = \sum \text{[force-couple(cyl.X) x distX]} \text{in kNm}^2 \]

The X-type guide force moment is then defined as:

\[M_{x} = \text{‘Bi-Moment’}/L \text{[kNm]} \]

For modelling purpose the size of the four (4) forces can be calculated:

\[\text{Force} = \frac{M_{x}}{L_{x}} \text{[kN]} \]

where:

\[L_{x} \text{ is the horizontal length between ‘force points’} \]

Similar to the situation for the H-type guide force moment, the forces may be applied in positions suitable for the FEM model of the hull. Thus the forces may be referred to another vertical level L\(_z\) above crankshaft centre line. These forces can be calculated as follows:

\[\text{Force}_{z, \text{one point}} = \frac{M_{x} \times L}{L_{x} \times L_{z}} \text{[kN]} \]

In order to calculate the forces it is necessary to know the lengths of the connecting rods = L, which are:

<table>
<thead>
<tr>
<th>Engine Type</th>
<th>L in mm</th>
<th>Engine Type</th>
<th>L in mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>K98MC6/7</td>
<td>3,220</td>
<td>S50MC6</td>
<td>2,190</td>
</tr>
<tr>
<td>K98MC-C6/7</td>
<td>3,090</td>
<td>S50MC-C7/8</td>
<td>2,050</td>
</tr>
<tr>
<td>S90MC-C7/8</td>
<td>3,270</td>
<td>S46MC-C7/8</td>
<td>1,980</td>
</tr>
<tr>
<td>K90MC-C6</td>
<td>3,159</td>
<td>S42MC7</td>
<td>2,025</td>
</tr>
<tr>
<td>S80MC6</td>
<td>3,504</td>
<td>S35MC7</td>
<td>1,600</td>
</tr>
<tr>
<td>S80MC-C7/8</td>
<td>3,280</td>
<td>L35MC6</td>
<td>1,260</td>
</tr>
<tr>
<td>K80MC-C6</td>
<td>2,920</td>
<td>S26MC6</td>
<td>1,125</td>
</tr>
<tr>
<td>S70MC6</td>
<td>3,066</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S70MC-C7/8</td>
<td>2,870</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L70MC-C7/8</td>
<td>2,660</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S60MC6</td>
<td>2,628</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S60MC-C7/8</td>
<td>2,460</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L60MC-C7/8</td>
<td>2,280</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Axial Vibrations

When the crank throw is loaded by the gas pressure through the connecting rod mechanism, the arms of the crank throw deflect in the axial direction of the crankshaft, exciting axial vibrations. Through the thrust bearing, the system is connected to the ship’s hull.

Generally, only zero-node axial vibrations are of interest. Thus the effect of the additional bending stresses in the crankshaft and possible vibrations of the ship’s structure due to the reaction force in the thrust bearing are to be considered.

An axial damper is fitted as standard on all engines, minimising the effects of the axial vibrations (4 3111).

Torsional Vibrations

The reciprocating and rotating masses of the engine including the crankshaft, the thrust shaft, the intermediate shaft(s), the propeller shaft and the propeller are for calculation purposes considered as a system of rotating masses (inertias) interconnected by torsional springs. The gas pressure of the engine acts through the connecting rod mechanism with a varying torque on each crank throw, exciting torsional vibration in the system with different frequencies.

In general, only torsional vibrations with one and two nodes need to be considered. The main critical order, causing the largest extra stresses in the shaft line, is normally the vibration with order equal to the number of cylinders, i.e., six cycles per revolution on a six cylinder engine. This resonance is positioned at the engine speed corresponding to the natural torsional frequency divided by the number of cylinders.

The torsional vibration conditions may, for certain installations require a torsional vibration damper, option: 4 3105.

Based on our statistics, this need may arise for the following types of installation:
- Plants with controllable pitch propeller
- Plants with unusual shafting layout and for special owner/yard requirements
- Plants with 8-cylinder engines.

The so-called QPT (Quick Passage of a barred speed range Technique), is an alternative to a torsional vibration damper, on a plant equipped with a controllable pitch propeller. The QPT could be implemented in the governor in order to limit the vibratory stresses during the passage of the barred speed range.

The application of the QPT, option: 4 31108, has to be decided by the engine maker and MAN Diesel based on final torsional vibration calculations.

Six-cylinder engines, require special attention. On account of the heavy excitation, the natural frequency of the system with one-node vibration should be situated away from the normal operating speed range, to avoid its effect. This can be achieved by changing the masses and/or the stiffness of the system so as to give a much higher, or much lower, natural frequency, called undercritical or overcritical running, respectively.

Owing to the very large variety of possible shafting arrangements that may be used in combination with a specific engine, only detailed torsional vibration calculations of the specific plant can determine whether or not a torsional vibration damper is necessary.

Undercritical running

The natural frequency of the one-node vibration is so adjusted that resonance with the main critical order occurs about 35-45% above the engine speed at specified MCR.

Such undercritical conditions can be realised by choosing a rigid shaft system, leading to a relatively high natural frequency.

The characteristics of an undercritical system are normally:
- Relatively short shafting system
- Probably no tuning wheel
- Turning wheel with relatively low inertia
- Large diameters of shafting, enabling the use of shafting material with a moderate ultimate tensile strength, but requiring careful shaft alignment, (due to relatively high bending stiffness)
- Without barred speed range
Critical Running

When running undercritical, significant varying torque at MCR conditions of about 100-150% of the mean torque is to be expected.

This torque (propeller torsional amplitude) induces a significant varying propeller thrust which, under adverse conditions, might excite annoying longitudinal vibrations on engine/double bottom and/or deck house.

The yard should be aware of this and ensure that the complete aft body structure of the ship, including the double bottom in the engine room, is designed to be able to cope with the described phenomena.

Overcritical running

The natural frequency of the one-node vibration is so adjusted that resonance with the main critical order occurs about 30-70% below the engine speed at specified MCR. Such overcritical conditions can be realised by choosing an elastic shaft system, leading to a relatively low natural frequency.

The characteristics of overcritical conditions are:

• Tuning wheel may be necessary on crankshaft fore end
• Turning wheel with relatively high inertia
• Shafts with relatively small diameters, requiring shafting material with a relatively high ultimate tensile strength
• With barred speed range (EoD 4 07 015) of about ±10% with respect to the critical engine speed.

Torsional vibrations in overcritical conditions may, in special cases, have to be eliminated by the use of a torsional vibration damper.

Overcritical layout is normally applied for engines with more than four cylinders.

Please note:

We do not include any tuning wheel or torsional vibration damper in the standard scope of supply, as the proper countermeasure has to be found after torsional vibration calculations for the specific plant, and after the decision has been taken if and where a barred speed range might be acceptable.

For further information about vibration aspects, please refer to our publications:

An Introduction to Vibration Aspects
Vibration Characteristics of Two-stroke Engines

The publications are available at www.mandiesel.com under ‘Quicklinks’ → ‘Technical Papers’
External Forces and Moments, S50MC6 Layout point L₁ - SFOC

<table>
<thead>
<tr>
<th>No of cylinder</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firing type</td>
<td>1-4-3-2-5</td>
<td>1-5-3-4-2-6</td>
<td>1-7-2-5-4-3-6</td>
<td>1-8-3-4-7-2-5-6</td>
</tr>
</tbody>
</table>

External forces [kN]:

<table>
<thead>
<tr>
<th>Order</th>
<th>Horizontal</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Vertical</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Vertical</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

External moments [kNm]:

<table>
<thead>
<tr>
<th>Order</th>
<th>Horizontal a)</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical a)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Vertical c)</td>
<td>772 c)</td>
<td>224</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Vertical</td>
<td>5</td>
<td>41</td>
<td>115</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>Vertical</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Guide force H-moments in [kNm]:

<table>
<thead>
<tr>
<th>x No. of cyl</th>
<th>579</th>
<th>421</th>
<th>317</th>
<th>217</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 x No. of cyl.</td>
<td>47</td>
<td>18</td>
<td>23</td>
<td>22</td>
</tr>
<tr>
<td>3 x No. of cyl.</td>
<td>15</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Guide force X-moments in [kNm]:

<table>
<thead>
<tr>
<th>Order</th>
<th>67</th>
<th>0</th>
<th>40</th>
<th>134</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>81</td>
<td>57</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>110</td>
<td>200</td>
<td>218</td>
<td>280</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td>189</td>
<td>537</td>
<td>218</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>47</td>
<td>594</td>
</tr>
<tr>
<td>6</td>
<td>13</td>
<td>0</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>92</td>
<td>0</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>55</td>
<td>39</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>55</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>13</td>
<td>38</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0</td>
<td>21</td>
<td>27</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>13</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>11</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

a) 1st order moments are, as standard, balanced so as to obtain equal values for horizontal and vertical moments for all cylinder numbers.

c) 5 and 6-cylinder engines can be fitted with 2nd order moment compensators on the aft and fore end, reducing the 2nd order external moment.

Table 17.07.01
Monitoring Systems and Instrumentation

Engine monitoring and instrumentation can be enhanced by Man Diesel’s PMI system for measuring cylinder pressure and by the CoCoS-EDS (Computer Controlled Surveillance – Engine Diagnostics System) for engine performance evaluation. Both of which have been in service since 1994.

The monitoring system measures the main parameters of the engine and makes an evaluation of the general engine condition, indicating the measures to be taken. This ensures that the engine performance is kept within the prescribed limits throughout the engines lifetime.

In its basic design the MC engine instrumentation consists of:

- Engine Control System
- Shut-down sensors, option: 4 75 124

The optional extras are:

- CoCoS system
type EDS on-line, option: 4 09 660

- PMI system type PT/S off-line, option: 4 75 208

- PMI system type on-line, option: 4 75 215

As most engines are sold for Unattended Machinery Spaces (UMS), the following option is normally included:

- Sensors for alarm, slow down and remote indication according to the classification society’s and MAN Diesel’s requirements for UMS, option: 4 75 127, see Section 18.04.

Sensors for CoCoS can be ordered, if required, as option: 4 75 129. They are listed in Section 18.03.

All instruments are identified by a combination of symbols and a position number as shown in Section 18.07.
PMI System

As an option on the MC engines, the mechanical indicator system can be supported by a pressure analyser system for measurement of the cylinder combustion pressure.

Monitoring of cylinder pressures allows for:
- optimising the engine performance
- optimising the fuel economy
- minimising engine load
- minimising operating cost through condition based maintenance
- complying with emission requirements

Measurements

The cylinder pressure is measured by a high performance piezo-electric pressure transducer, mounted on the indicator valve.

The engine speed signal is obtained from an angle encoder mounted on crankshaft fore end. Alternatively the signal could be obtained from an optical sensor reading a zebra tape bonded to the engine shaft.

The PMI system data is automatically compensated for crankshaft deflection from the torque generated at different loads.

Fig. 18.02.01: PMI type PT/S off-line, option: 4 75 208
PMI System, Off-line and On-line Versions

The PMI system is available in two versions, PT/S off-line and on-line, see Fig. 18.02.01 and 02.

The basic functions of the two different versions are:

- **PT/S off-line version, option 4 75 208:**
 The manually operated single transducer is moved from one cylinder to another in order to complete measurements on all cylinders.

- **On-line version, option 4 75 215:**
 Fixed mounted pressure transducing sensor on each cylinder for continuous measurements, analysis and adjustments.

![PMI System Diagram](image-url)

Fig. 18.02.02: PMI type on-line, option: 4 75 215

Abbreviations:
- **CA:** Charge Amplifier
- **SC:** Signal Conditioner
- **Cyl:** Engine Cylinder Sensor
- **CJB:** Calibration Junction Box
CoCoS-EDS

The Computer Controlled Surveillance system is the family name of the software application products from the MAN Diesel group.

In order to obtain an easier, more versatile and continuous diagnostics system, the Engine Control System and the PMI System is recommended extended by the CoCoS-EDS products.

CoCoS-EDS features

The CoCoS-EDS, option: 4 09 660, allows for engine condition monitoring through surveillance of operating states and behaviour of diesel engines.

Primary features are:

• Data and trend logging

• Engine performance monitoring, analysis and reporting

• Troubleshooting and diagnostics.

The CoCoS-EDS assists the operator effectively in maintaining the main as well as the auxiliary engines in optimal operating condition.

With CoCoS-EDS, early intervention as well as preventive maintenance, the engine operators are able to reduce the risk of damages and failures. CoCoS-EDS further allow for easier troubleshooting in case of unusual engine behaviour.

Connectivity

In order to obtain an easier, more versatile and continuous diagnostics system, the CoCoS-EDS is recommended extended by interfaces to the PMI system and the plant’s alarm and monitoring system.

Table 18.03.01 lists the sensors required to enable online diagnostics for CoCoS-EDS, option: 4 75 129.
CoCoS-EDS Sensor List

Required sensors for online engine performance analysis, option: 4 75 129.
All pressure gauges measuring relative pressure, except PE 8802 Ambient pressure.

<table>
<thead>
<tr>
<th>Sensor No.</th>
<th>Parameter name</th>
<th>No. sensors</th>
<th>Recommended range</th>
<th>Type</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel oil system data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE 8001</td>
<td>Inlet pressure</td>
<td>1</td>
<td>0 - 10 bar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE 8005</td>
<td>Inlet temperature</td>
<td>1</td>
<td>0 - 200 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooling water system</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE 8421</td>
<td>Pressure air cooler inlet</td>
<td>A/C</td>
<td>0 - 4 bar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE 8422</td>
<td>Temperature air cooler inlet</td>
<td>1</td>
<td>0 - 100 °C</td>
<td>PT 100</td>
<td></td>
</tr>
<tr>
<td>TE 8423</td>
<td>Temperature air cooler outlet</td>
<td>A/C</td>
<td>0 - 100 °C</td>
<td>PT 100</td>
<td></td>
</tr>
<tr>
<td>PDE 8424</td>
<td>dP cooling water across air cooler</td>
<td>A/C</td>
<td>0 - 800 mbar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scavenging air system</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE 8601</td>
<td>Scavenge air receiver pressure</td>
<td>Rec.</td>
<td>0 - 4 bar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE 8605</td>
<td>Scavenge air cooler air inlet temperature</td>
<td>A/C</td>
<td>0 - 200 °C</td>
<td>PT 100</td>
<td></td>
</tr>
<tr>
<td>PDE 8606</td>
<td>dP air across scavenge air cooler</td>
<td>A/C</td>
<td>0 - 100 mbar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDE 8607</td>
<td>dP air across T/C air intake filter</td>
<td>T/C</td>
<td>0 - 100 mbar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE 8608</td>
<td>Scavenge air cooler outlet temperature</td>
<td>A/C</td>
<td>0 - 100 °C</td>
<td>PT 100</td>
<td>Optional if one T/C</td>
</tr>
<tr>
<td>TE 8609</td>
<td>Scavenge air receiver temperature</td>
<td>Rec.</td>
<td>0 - 100 °C</td>
<td>PT 100</td>
<td></td>
</tr>
<tr>
<td>TE 8612</td>
<td>T/C air intake temperature</td>
<td>T/C</td>
<td>0 - 100 °C</td>
<td>PT 100</td>
<td></td>
</tr>
<tr>
<td>Exhaust gas system</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE 8701</td>
<td>Exhaust gas temperature at turbine inlet</td>
<td>T/C</td>
<td>0 - 600 °C</td>
<td>NiCrNi</td>
<td></td>
</tr>
<tr>
<td>TE 8702</td>
<td>Exhaust gas temperature after exhaust valve</td>
<td>Cyl.</td>
<td>0 - 600 °C</td>
<td>NiCrNi</td>
<td></td>
</tr>
<tr>
<td>PE 8706</td>
<td>Exhaust gas receiver pressure</td>
<td>Rec.</td>
<td>0 - 4 bar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE 8707</td>
<td>Exhaust gas temperature at turbine outlet</td>
<td>T/C</td>
<td>0 - 600 °C</td>
<td>NiCrNi</td>
<td></td>
</tr>
<tr>
<td>PE 8708</td>
<td>Turbine back pressure</td>
<td>T/C</td>
<td>0 - 100 mbar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SE 8801</td>
<td>Turbocharger speed</td>
<td>T/C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE 8802</td>
<td>Ambient pressure</td>
<td>1</td>
<td>900 - 1100 mbar</td>
<td>Absolute!</td>
<td></td>
</tr>
<tr>
<td>SE 4020</td>
<td>Engine speed</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZE 3003</td>
<td>Governor index (absolute)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power take off/in from main engine shaft</td>
<td>1</td>
<td></td>
<td>With option</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XC1401</td>
<td>Mean Indicated Pressure MIP</td>
<td>Cyl.</td>
<td>1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XC1402</td>
<td>Maximum Pressure Pmax</td>
<td>Cyl.</td>
<td>1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XC1403</td>
<td>Compression Pressure Pcomp</td>
<td>Cyl.</td>
<td>1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– PMI online engine speed</td>
<td>Cyl. rpm</td>
<td>1)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1): In case of MAN Diesel PMI system - signal from PMI system. Other MIP systems - signal from manual input

Table 18.03.01 CoCoS-EDS Sensor list
Alarm – Slow Down and Shut Down System

The shut down system must be electrically separated from other systems by using independent sensors, or sensors common for the alarm system but with galvanically separated electrical circuits, i.e. one sensor with two sets of electrically independent terminals. The list of sensors are shown in Table 18.04.04.

Attended Machinery Space (AMS)

The basic safety system for a MAN Diesel engine is designed for Attended Machinery Space and comprises the temperature sensors and pressure sensors that are specified in the ‘MAN Diesel’ column for shut down in Table 18.04.04.

These sensors are included in the basic scope of supply (option: 4 75 124) and are also included for UMS.

Unattended Machinery Space (UMS)

In the ‘Extent of Delivery’ an asterisk (*) marks items normally required for plants designed for UMS including the sensors for alarm and slow down, option: 4 75 127, but not those for shut down.

The shut down and slow down panels can be ordered as options: 4 75 610, 4 75 614 or 4 75 615 whereas the alarm panel is yard’s supply, as it normally includes several other alarms than those for the main engine.

For practical reasons, the sensors for the engine itself are normally delivered from the engine supplier, so they can be wired to terminal boxes on the engine.

The number and position of the terminal boxes depends on the degree of dismantling specified in the Dispatch Pattern for the transportation of the engine based on the lifting capacities available at the engine maker and at the yard.

Alarm, slow down and remote indication sensors

The International Association of Classification Societies (IACS) indicates that a common sensor can be used for alarm, slow down and remote indication.

A general view of the alarm, slow down and shut down systems is shown in Fig. 18.04.01.

Tables 18.04.02 and 18.04.03 show the requirements by MAN Diesel for alarm and slow down and for UMS by the classification societies (Class), as well as IACS’ recommendations.

The number of sensors to be applied to a specific plant for UMS is the sum of requirements of the classification society, the Buyer and MAN Diesel.

If further analogue sensors are required, they can be ordered as option: 4 75 128.

The slow down functions are designed to safeguard the engine components against overloading during normal service conditions and to keep the ship manouevrable if fault conditions occur.

The slow down sequence must be adapted to the actual plant parameters, such as for FPP or CPP, engine with or without shaft generator, and to the required operating mode.
General outline of the electrical system

The figure shows the concept approved by all classification societies.

The shut down panel and slow down panel can be combined for some makers.

The classification societies permit having common sensors for slow down, alarm and remote indication.

One common power supply might be used, instead of the three indicated, provided that the systems are equipped with separate fuses.

The figure shows the concept approved by all classification societies.

The shut down panel and slow down panel can be combined for some makers.

The classification societies permit having common sensors for slow down, alarm and remote indication.

Fig. 18.04.01: Panels and sensors for alarm and safety systems
Alarms for UMS – Class and MAN Diesel requirements

<table>
<thead>
<tr>
<th>Sensor and function</th>
<th>Point of location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 1 1 1 1 1 1</td>
<td>PT 8001 AL Fuel oil, inlet engine</td>
</tr>
<tr>
<td>1 1 1 1 1 1 1 1 1 1</td>
<td>LS 8006 AH Leakage from high pressure pipes</td>
</tr>
</tbody>
</table>

Fuel oil

<table>
<thead>
<tr>
<th>Sensor and function</th>
<th>Point of location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 1 1 1 1 1 1</td>
<td>PT 8013 AL Lubricating oil inlet to turbocharger/turbocharger 2</td>
</tr>
<tr>
<td>1 1 1 1 1 1 1 1 1 1</td>
<td>TE 8106 AH Thrust bearing segment</td>
</tr>
<tr>
<td>1 1 1 1 1 1 1 1 1 1</td>
<td>PT 8108 AL Lubricating oil inlet to main engine</td>
</tr>
<tr>
<td>1 1 1 1 1 1 1 1 1 1</td>
<td>TE 8112 AH Lubricating oil inlet to main engine</td>
</tr>
<tr>
<td>1 1 1 1 1 1 1 1 1 1</td>
<td>TE 8113 AH Piston cooling oil outlet/cylinder</td>
</tr>
<tr>
<td>1 1 1 1 1 1 1 1 1 1</td>
<td>FS 8114 AL Piston cooling oil outlet/cylinder</td>
</tr>
<tr>
<td>1 1 1 1 1 1 1 1 1 1</td>
<td>TE 8117 AH Turbocharger lubricating oil outlet from turbocharger/turbocharger 2</td>
</tr>
<tr>
<td>1 1 1 1 1 1 1 1 1 1</td>
<td>TE 8123 AH Main bearing oil outlet temperature/main bearing (Only MC types 42-26)</td>
</tr>
<tr>
<td>1 1 1 1 1 1 1 1 1 1</td>
<td>XC 8126 AH Bearing wear (K98MC6/7 and all MC-C)</td>
</tr>
<tr>
<td>1 1 1 1 1 1 1 1 1 1</td>
<td>XS 8150 AH Water in lubricating oil (All MC/MC-C except S80-50MC6)</td>
</tr>
<tr>
<td>1 1 1 1 1 1 1 1 1 1</td>
<td>XS 8150 AH Water in lubricating oil – too high (All MC/MC-C except S80-50MC6)</td>
</tr>
</tbody>
</table>

Lubricating oil

1 Indicates that the sensor is required.

The sensors in the MAN Diesel column are included for Unattended Machinery Spaces (UMS), option: 4 75 127, subject to class requirements and will be finally specified in the Guidance Values Automation for the specific engine plant.

The sensor identification codes and functions are listed in Table 18.07.01.

The tables are liable to change without notice, and are subject to latest class requirements.

2) For turbochargers with slide bearings only

Table 18.04.02a: Alarm functions for UMS
Alarms for UMS – Class and MAN Diesel requirements

<table>
<thead>
<tr>
<th>ABS</th>
<th>BV</th>
<th>CCS</th>
<th>DNV</th>
<th>GL</th>
<th>KR</th>
<th>LR</th>
<th>NK</th>
<th>RINA</th>
<th>RS</th>
<th>IACS</th>
<th>MAN Diesel</th>
<th>Sensor and function</th>
<th>Point of location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>1 PT 8401 AL</td>
<td>Jacket cooling water inlet</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1 PDS/PDT 8403 AL</td>
<td>Jacket cooling water across engine; to be calculated in alarm system from sensor no. 8402 and 8413</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1 TE 8407 AL</td>
<td>Jacket cooling water inlet</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1 TE 8408 AH</td>
<td>Jacket cooling water outlet, cylinder</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1 PT 8413 I</td>
<td>Jacket cooling water outlet, common pipe</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1 PT 8421 AL</td>
<td>Cooling water inlet air cooler</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1 TE 8422 AH</td>
<td>Cooling water inlet air cooler/air cooler</td>
<td></td>
</tr>
</tbody>
</table>

Cooling water

Compressed air

Scavenge air

1 Indicates that the sensor is required.

The sensors in the MAN Diesel column are included for Unattended Machinery Spaces (UMS), option: 4 75 127, subject to class requirements and will be finally specified in the Guidance Values Automation for the specific engine plant.

The sensor identification codes and functions are listed in Table 8.07.0. The tables are liable to change without notice, and are subject to latest class requirements.

- Select one of the alternatives
 - ✠ Alarm for high pressure, too
 - ✦ Alarm for low pressure, too

Table 18.04.02b: Alarm functions for UMS
Alarms for UMS – Class and MAN Diesel requirements

<table>
<thead>
<tr>
<th>Sensor and function</th>
<th>Point of location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exhaust gas</td>
<td></td>
</tr>
<tr>
<td>TC 8701 AH</td>
<td>Exhaust gas before turbocharger/turbocharger</td>
</tr>
<tr>
<td>TC 8702 AH</td>
<td>Exhaust gas after exhaust valve, cylinder/cylinder</td>
</tr>
<tr>
<td>TC 8707 AH</td>
<td>Exhaust gas outlet turbocharger/turbocharger (Yard's supply)</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td></td>
</tr>
<tr>
<td>ZT 8801 AH</td>
<td>Turbocharger overspeed</td>
</tr>
<tr>
<td>WT 8805 AH</td>
<td>Vibration of turbocharger</td>
</tr>
<tr>
<td>WT 8812 AH</td>
<td>Axial vibration monitor 2)</td>
</tr>
<tr>
<td>XS 8813 AH</td>
<td>Oil mist in crankcase/cylinder</td>
</tr>
<tr>
<td>XS 8814 AL</td>
<td>Oil mist detector failure</td>
</tr>
<tr>
<td>XC 8816 I</td>
<td>Shaftline earthing device</td>
</tr>
</tbody>
</table>

1 Indicates that the sensor is required.

The sensors in the MAN Diesel column are included for Unattended Machinery Spaces (UMS), option: 4 75 27, subject to class requirements and will be finally specified in the Guidance Values Automation for the specific engine plant.

The sensor identification codes and functions are listed in Table 8.07.01.

The tables are liable to change without notice, and are subject to latest class requirements.

(1) May be combined with TC 8702 AH where turbocharger is mounted directly on the exhaust manifold.

2) Required for: K-MC-C6/7 and K98MC6/7 engines with 11 and 14 cylinders.
 S-MC-C7/8 and L-MC-C7/8 engines with 5 and 6 cylinders.
 (For 9-12 cylinder S42MC7, L35MC6, and S26MC6 data is available on request).

Table 8.04.02c: Alarm functions for UMS
Slow down for UMS – Class and MAN Diesel requirements

<table>
<thead>
<tr>
<th>Sensor and function</th>
<th>Point of location</th>
</tr>
</thead>
<tbody>
<tr>
<td>TE 8106 YH</td>
<td>Thrust bearing segment</td>
</tr>
<tr>
<td>PT 8108 YL</td>
<td>Lubricating oil inlet to main engine</td>
</tr>
<tr>
<td>TE 8112 YH</td>
<td>Lubricating oil inlet to main engine</td>
</tr>
<tr>
<td>TE 8113 YH</td>
<td>Piston cooling oil outlet/cylinder</td>
</tr>
<tr>
<td>FS 8114 YL</td>
<td>Piston cooling oil outlet/cylinder</td>
</tr>
<tr>
<td>TE 8123 YH</td>
<td>Main bearing oil outlet temperature/main bearing (Only MC types 42-26)</td>
</tr>
<tr>
<td>XC 8126 YH</td>
<td>Bearing wear (K98MC6/7 and all MC-C)</td>
</tr>
<tr>
<td>PT 8401 YL</td>
<td>Jacket cooling water inlet</td>
</tr>
<tr>
<td>TE 8408 YH</td>
<td>Jacket cooling water outlet, cylinder/cylinder</td>
</tr>
<tr>
<td>TE 8609 YH</td>
<td>Scavenge air receiver</td>
</tr>
<tr>
<td>TE 8610 YH</td>
<td>Scavenge air box fire-alarm, cylinder/cylinder</td>
</tr>
<tr>
<td>TC 8701 YH</td>
<td>Exhaust gas before turbocharger/turbocharger</td>
</tr>
<tr>
<td>TC 8702 YH</td>
<td>Exhaust gas after exhaust valve, cylinder/cylinder, deviation from average</td>
</tr>
<tr>
<td>XS 8813 YH</td>
<td>Oil mist in crankcase/cylinder</td>
</tr>
</tbody>
</table>

1 Indicates that the sensor is required.
The sensors in the MAN Diesel column are included for Unattended Machinery Spaces (UMS), option: 4 75 127, subject to class requirements and will be finally specified in the Guidance Values Automation for the specific engine plant.
The sensor identification codes and functions are listed in Table 8.07.01.
The tables are liable to change without notice, and are subject to latest class requirements.

2) Required for: K-MC-C6/7 and K98MC6/7 engines with 11 and 14 cylinders.
S-MC-C7/8 and L-MC-C7/8 engines with 5 and 6 cylinders.
(For 9-12 cylinder S42MC7, L35MC6, and S26MC6 data is available on request).

Select one of the alternatives
* Or shut down

Or alarm for low flow
* Or shut down

Or alarm for overheating of main, crank and crosshead bearings, option: 4 75 134.
See also Table 18.04.04: Shut down functions for AMS and UMS

Table 18.04.03: Slow down functions for UMS
Shut down for AMS and UMS – Class and MAN Diesel requirements

<table>
<thead>
<tr>
<th>Sensor and function</th>
<th>Point of location</th>
<th>ABS</th>
<th>BV</th>
<th>CCS</th>
<th>DNV</th>
<th>GL</th>
<th>KR</th>
<th>LR</th>
<th>NK</th>
<th>RINA</th>
<th>RS</th>
<th>IACS</th>
<th>MAN Diesel</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS/PT 8109 Z</td>
<td>Lubricating oil inlet to main engine and thrust bearing</td>
<td>1</td>
</tr>
<tr>
<td>ZT 4020 Z</td>
<td>Engine overspeed, incorporated in Engine Control System</td>
<td>1</td>
</tr>
<tr>
<td>TE/TS 8107 Z</td>
<td>Thrust bearing segment</td>
<td>1</td>
</tr>
<tr>
<td>PS/PT 8402 Z</td>
<td>Jacket cooling water inlet</td>
<td>1</td>
</tr>
<tr>
<td>XS 8813 Z</td>
<td>Oil mist in crankcase/cylinder</td>
<td>1</td>
</tr>
</tbody>
</table>

1 Indicates that the sensor is required.

The sensors in the MAN Diesel column are included for Unattended Machinery Spaces (UMS), option: 4 75 127, subject to class requirements and will be finally specified in the Guidance Values Automation for the specific engine plant.

The sensors in the MAN Diesel column are included for Unattended Machinery Spaces (UMS), option: 4 75 127, subject to class requirements and will be finally specified in the Guidance Values Automation for the specific engine plant.

The sensor identification codes and functions are listed in Table 8.07.01.
The tables are liable to change without notice, and are subject to latest class requirements.

Or alarm for overheating of main, crank and crosshead bearings, option: 4 75 134.
See also Table 8.04.03: Slow down functions for UMS
Or slow down

International Association of Classification Societies

The members of the International Association of Classification Societies, IACS, have agreed that the stated sensors are their common recommendation, apart from each class’ requirements.

The members of IACS are:
ABS American Bureau of Shipping
BV Bureau Veritas
CCS China Classification Society
DNV Det Norske Veritas
GL Germanischer Lloyd
KR Korean Register
LR Lloyd’s Register
NK Nippon Kaiji Kyokai
RINA Registro Italiano Navale
RS Russian Maritime Register of Shipping

and the associated member is:
IRS Indian Register of Shipping

Table 18.04.04: Shut down functions for AMS and UMS, option: 4 75 124
Local Instruments

The basic local instrumentation on the engine, options: 4 70 120 comprises thermometers, pressure gauges and other indicators located on the piping or mounted on panels on the engine. The tables 18.05.01a, b and c list those as well as sensors for slow down, alarm and remote indication, option: 4 75 127.

<table>
<thead>
<tr>
<th>Local instruments</th>
<th>Remote sensors</th>
<th>Point of location</th>
</tr>
</thead>
<tbody>
<tr>
<td>TI 8005</td>
<td>TE 8005</td>
<td>Fuel oil</td>
</tr>
<tr>
<td>TI 8006</td>
<td>TE 806</td>
<td>Thrust bearing segment</td>
</tr>
<tr>
<td>TI 8112</td>
<td>TE 8112</td>
<td>Lubricating oil inlet to main engine</td>
</tr>
<tr>
<td>TI 8113</td>
<td>TE 8113</td>
<td>Piston cooling oil outlet/cylinder</td>
</tr>
<tr>
<td>TI 8117</td>
<td>TE 8117</td>
<td>Lubricating oil outlet from turbocharger/turbocharger (depends on turbocharger design)</td>
</tr>
<tr>
<td></td>
<td>TE 8123</td>
<td>Main bearing oil outlet temperature/main bearing (Only engine types 42-26)</td>
</tr>
<tr>
<td>TL 8202</td>
<td></td>
<td>Cylinder lubricating oil inlet (Alpha cylinder lubricator)</td>
</tr>
<tr>
<td>TI 8407</td>
<td>TE 8407</td>
<td>High temperature cooling water, jacket cooling water inlet</td>
</tr>
<tr>
<td>TI 8408</td>
<td>TE 8408</td>
<td>Jacket cooling water outlet, cylinder/cylinder</td>
</tr>
<tr>
<td>TI 8409</td>
<td>TE 8409</td>
<td>Jacket cooling water outlet/turbocharger</td>
</tr>
<tr>
<td>TI 8422</td>
<td>TE 8422</td>
<td>Low temperature cooling water, seawater or freshwater for central cooling</td>
</tr>
<tr>
<td>TI 8423</td>
<td>TE 8423</td>
<td>Cooling water inlet, air cooler</td>
</tr>
<tr>
<td>TI 8605</td>
<td>TE 8605</td>
<td>Scavenge air before air cooler/air cooler</td>
</tr>
<tr>
<td>TI 8608</td>
<td>TE 8608</td>
<td>Scavenge air after air cooler/air cooler</td>
</tr>
<tr>
<td>TI 8609</td>
<td>TE 8609</td>
<td>Scavenge air receiver</td>
</tr>
<tr>
<td></td>
<td>TE 8610</td>
<td>Scavenge air box – fire alarm, cylinder/cylinder</td>
</tr>
<tr>
<td>TI 8701</td>
<td>TC 8701</td>
<td>Exhaust gas before turbocharger/turbocharger</td>
</tr>
<tr>
<td>TI 8702</td>
<td>TC 8702</td>
<td>Exhaust gas after exhaust valve, cylinder/cylinder</td>
</tr>
<tr>
<td></td>
<td>TC 8704</td>
<td>Exhaust gas inlet exhaust gas receiver</td>
</tr>
<tr>
<td>TI 8707</td>
<td>TC 8707</td>
<td>Exhaust gas outlet turbocharger</td>
</tr>
</tbody>
</table>

Table 18.05.01a: Local thermometers on engine, option 4 70 120, and remote indication sensors, option: 4 75 127
Local instruments

<table>
<thead>
<tr>
<th>Pressure gauge (manometer)</th>
<th>Pressure transmitter/switch</th>
<th>Point of location</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI 8001</td>
<td>PT 8001</td>
<td>Fuel oil</td>
</tr>
<tr>
<td></td>
<td>PT 8007</td>
<td>Fuel oil, inlet engine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fuel pump roller guide gear activated (Only engine types 98-80)</td>
</tr>
<tr>
<td>PI 8103</td>
<td>PT 8103</td>
<td>Lubricating oil inlet to turbocharger/turbocharger</td>
</tr>
<tr>
<td>PI 8108</td>
<td>PT 8108</td>
<td>Lubricating oil inlet to main engine</td>
</tr>
<tr>
<td></td>
<td>PS/PT 8109</td>
<td>Lubricating oil inlet to main engine and thrust bearing</td>
</tr>
<tr>
<td>PT 8201</td>
<td></td>
<td>Cylinder lubrication oil inlet pressure (Alpha lubricator)</td>
</tr>
<tr>
<td>PDI 8206</td>
<td></td>
<td>Pressure drop across filter</td>
</tr>
<tr>
<td>PI 8401</td>
<td>PT 8401</td>
<td>Jacket cooling water inlet</td>
</tr>
<tr>
<td></td>
<td>PS/PT 8402</td>
<td>Jacket cooling water inlet (Only Germanischer Lloyd)</td>
</tr>
<tr>
<td></td>
<td>PDS/PDT 8403 I</td>
<td>Jacket cooling water across engine</td>
</tr>
<tr>
<td></td>
<td>PT 8413</td>
<td>Jacket cooling water outlet, common pipe</td>
</tr>
<tr>
<td>PI 8421</td>
<td>PT 8421</td>
<td>Cooling water inlet, air cooler</td>
</tr>
<tr>
<td>PI 8501</td>
<td>PT 8501 I</td>
<td>Starting air inlet to main starting valve</td>
</tr>
<tr>
<td>PI 8503</td>
<td>PT 8503 I</td>
<td>Control air inlet</td>
</tr>
<tr>
<td>PI 8504</td>
<td>PT 8504</td>
<td>Safety air inlet</td>
</tr>
<tr>
<td></td>
<td>PT 8505</td>
<td>Air inlet to air cylinder for exhaust valve</td>
</tr>
<tr>
<td>PI 8601</td>
<td>PT 8601</td>
<td>Scavenge air receiver (PI 8601 instrument same as PI 8706)</td>
</tr>
<tr>
<td></td>
<td>PS 8604</td>
<td>Scavenge air receiver, auxiliary blower failure</td>
</tr>
<tr>
<td>PDI 8606</td>
<td></td>
<td>Pressure drop of air across cooler/air cooler</td>
</tr>
<tr>
<td>PI 8613</td>
<td>PT 8613</td>
<td>Pressure compressor scroll housing/turbocharger (NA type)</td>
</tr>
<tr>
<td>PDI 8614</td>
<td>PDT 8614</td>
<td>Pressure drop across compressor scroll housing/turbocharger (NA type)</td>
</tr>
<tr>
<td>PI 8706</td>
<td></td>
<td>Exhaust gas receiver/Exhaust gas outlet turbocharger</td>
</tr>
<tr>
<td>PI 8803</td>
<td></td>
<td>Air inlet for dry cleaning of turbocharger</td>
</tr>
<tr>
<td>PI 8804</td>
<td></td>
<td>Water inlet for cleaning of turbocharger</td>
</tr>
</tbody>
</table>

Table 18.05.01b: Local pressure gauges on engine, option: 4 70 120, and remote indication sensors, option: 4 75 127
<table>
<thead>
<tr>
<th>Local instruments</th>
<th>Remote sensors</th>
<th>Point of location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other indicators</td>
<td>Other transmitters/switches</td>
<td>Fuel oil</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Leakage from high pressure pipes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lubricating oil</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Piston cooling oil outlet/cylinder</td>
</tr>
<tr>
<td></td>
<td></td>
<td>XC 8126 Bearing wear (K98MC6/7 and all MC-C)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>XS 8150 Water in lubricating oil (All MC/MC-C except S80-5MC6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cylinder lube oil</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LS 8208 Level switch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LS 8250 Cylinder lubricators (built-in switches)/lubricator (Mechanical lubricator)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>XC 8220 MCU common alarm (Alpha cylinder lubrication system)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>XC 8221 BCU in control (Alpha cylinder lubrication system)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>XC 8222 MCU failure (Alpha cylinder lubrication system)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>XC 8223 BCU failure (Alpha cylinder lubrication system)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>XC 8224 MCU power fail (Alpha cylinder lubrication system)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>XC 8226 BCU power fail (Alpha cylinder lubrication system)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FS 8251 Cylinder lubricators (built-in switches)/lubricator (Mechanical lubricator)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scavenge air</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LS 8611 Water mist catcher – water level</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Miscellaneous functions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ST 8801 I Turbocharger speed/turbocharger</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WI 8812 Axial vibration monitor (For certain engines only, see note in Table 18.04.04) (WI 8812 instrument is part of the transmitter WT 8812)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WT 8812</td>
</tr>
<tr>
<td></td>
<td></td>
<td>XS 8813 Oil mist in crankcase/cylinder</td>
</tr>
<tr>
<td></td>
<td></td>
<td>XS 8814 Oil mist detector failure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>XC 8816 Shaftline earthing device</td>
</tr>
</tbody>
</table>

Table 18.05.01c: Other indicators on engine, option: 4 70 120, and remote indication sensors, option: 4 75 127
Other Alarm Functions

Drain box for fuel oil leakage alarm

Any leakage from the fuel oil high pressure pipes of any cylinder is drained to a common drain box fitted with a level alarm. This is included for both AMS and UMS.

Bearing Condition Monitoring

Based on our experience we decided in 1990 that all plants, whether constructed for Attended Machinery Space (AMS) or for Unattended Machinery Space (UMS), must include an oil mist detector specified by MAN Diesel. Since then an Oil Mist Detector (OMD) and optionally some extent of Bearing Temperature Monitoring (BTM) equipment have made up the warning arrangements for prevention of crankcase explosions on two-stroke engines. Both warning systems are approved by the classification societies.

In order to achieve a response to damage faster than possible with Oil Mist Detection and Bearing Temperature Monitoring alone we introduce Bearing Wear Monitoring (BWM) systems. By monitoring the actual bearing wear continuously, mechanical damage to the crank-train bearings (main-, crank- and crosshead bearings) can be predicted in time to react and avoid damaging the journal and bearing housing.

If the oil supply to a main bearing fails, the bearing temperature will rise and in such a case a Bearing Temperature Monitoring system will trigger an alarm before wear actually takes place. For that reason the ultimate protection against severe bearing damage and the optimum way of providing early warning, is a combined bearing wear and temperature monitoring system.

For all types of error situations detected by the different bearing condition monitoring systems applies that in addition to damaging the components, in extreme cases, a risk of a crankcase explosion exists.

Oil Mist Detector

The oil mist detector system constantly measures samples of the atmosphere in the crankcase compartments and registers the results on an optical measuring track, where the opacity (degree of haziness) is compared with the opacity of the atmospheric air. If an increased difference is recorded, a slow down is activated (a shut down in case of Germanische Lloyd).

Furthermore, for shop trials only MAN Diesel requires that the oil mist detector is connected to the shut down system.

The EoD lists three alternative oil mist detectors:

<table>
<thead>
<tr>
<th>Code</th>
<th>Detector Type</th>
<th>Make</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 75 161</td>
<td>Oil mist detector Graviner MK6. Make: Kidde Fire Protection</td>
<td></td>
</tr>
<tr>
<td>4 75 163</td>
<td>Oil mist detector Visatron VN 215/93. Make: Schaller</td>
<td></td>
</tr>
<tr>
<td>4 75 165</td>
<td>Oil mist detector QMI Make: Quality Monitoring Instruments Ltd</td>
<td></td>
</tr>
</tbody>
</table>

Diagrams for two of them are shown in Figs. 18.06.01a and 18.06.01b.
Fig. 18.06.01a: Oil mist detector pipes on engine, type Graviner MK6 from Kidde Fire Protection (EoD: 4 75 161)

Fig. 18.06.01b: Oil mist detector pipes on engine, type Visatron VN215/93 from Schaller (EoD: 4 75 163)
Bearing Wear Monitoring System

The Bearing Wear Monitoring (BWM) system monitors all three principal crank-train bearings using two proximity sensors forward/aft per cylinder unit and placed inside the frame box.

Targeting the guide shoe bottom ends continuously, the sensors measure the distance to the crosshead in Bottom Dead Center (BDC). Signals are computed and digitally presented to computer hardware, from which a useable and easily interpretable interface is presented to the user.

The measuring precision is more than adequate to obtain an alarm well before steel-to-steel contact in the bearings occur. Also the long-term stability of the measurements has shown to be excellent.

In fact, BWM is expected to provide long-term wear data at better precision and reliability than the manual vertical clearance measurements normally performed by the crew during regular service checks.

For the above reasons, we consider unscheduled open-up inspections of the crank-train bearings to be superfluous, given BWM has been installed.

Two BWM ‘high wear’ alarm levels including deviation alarm apply. The first level of the high wear / deviation alarm is indicated in the alarm panel only while the second level also activates a slow down.

The Extent of Delivery lists four Bearing Wear Monitoring options of which the two systems from Dr. E. Horn and Kongsberg could also include Bearing Temperature Monitoring:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Make</th>
</tr>
</thead>
<tbody>
<tr>
<td>475 142</td>
<td>Bearing Wear Monitoring System XTS-W. Make: AMOT</td>
<td></td>
</tr>
<tr>
<td>475 143</td>
<td>Bearing Wear Monitoring System BDMS. Make: Dr. E. Horn</td>
<td></td>
</tr>
<tr>
<td>475 144</td>
<td>Bearing Wear Monitoring System PS-10. Make: Kongsberg</td>
<td></td>
</tr>
<tr>
<td>475 147</td>
<td>Bearing Wear Monitoring System OPEN-predictor. Make: Rovsing</td>
<td></td>
</tr>
</tbody>
</table>

K98MC6/7 and all MC-C engines are as standard specified with Bearing Wear Monitoring for which any of the mentioned options could be chosen.

Water In Oil Monitoring System

In case the oil system becomes contaminated with an amount of water exceeding our limit of 0.2% (0.5% for short periods), acute corrosive wear of the crosshead bearing overlayer may occur. The higher the water content, the faster the wear rate.

To prevent water from accumulating in the lube oil and, thereby, causing damage to the bearings, the oil should be monitored manually or automatically by means of a Water In Oil (WIO) monitoring system connected to the engine alarm and monitoring system. In case of water contamination the source should be found and the equipment inspected and repaired accordingly.

The WIO system should trigger an alarm when the water content exceeds 0.3%, and preferably again when exceeding 0.5% measured as absolute water content.

Some WIO systems measure water activity, i.e. the relative availability of water in a substance expressed in aw on a scale from 0 to 1. Here, ‘0’ indicates oil totally free of water and ‘1’ oil fully saturated by water. The correlation to absolute water content in normal running as well as alarm condition is as follows:

<table>
<thead>
<tr>
<th>Engine condition</th>
<th>Abs. water content, %</th>
<th>Water activity, aw</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal running</td>
<td>0 - 0.2</td>
<td>0 - 0.7</td>
</tr>
<tr>
<td>Low alarm level</td>
<td>0.3</td>
<td>0.8</td>
</tr>
<tr>
<td>High alarm level</td>
<td>0.5</td>
<td>1.0</td>
</tr>
</tbody>
</table>

K98MC6/7, S42MC7, S35MC7, L35MC6 and S26MC6 as well as all MC-C engines are as standard specified with Water In Oil monitoring system.

Please note: Corrosion of the overlayer is a potential problem only for crosshead bearings, because only crosshead bearings are designed with an overlayer. Main and crankpin bearings may also suffer irreparable damage from water contamination, but the damage mechanism would be different and not as acute.
Bearing Temperature Monitoring System

The Bearing Temperature Monitoring (BTM) system continuously monitors the temperature of the bearing. Some systems measure the temperature on the backside of the bearing shell directly, other systems detect it by sampling a small part of the return oil from each bearing in the crankcase.

In case a specified temperature is recorded, either a bearing shell/housing temperature or bearing oil outlet temperature alarm is triggered.

In main bearings, the shell/housing temperature or the oil outlet temperature is monitored depending on how the temperature sensor of the BTM system, option: 4 75 133, is installed.

In crankpin and crosshead bearings, the shell/housing temperature or the oil outlet temperature is monitored depending on which BTM system is installed, options: 4 75 134 or 4 75 135.

For shell/housing temperature in main, crankpin and crosshead bearings two high temperature alarm levels apply. The first level alarm is indicated in the alarm panel while the second level activates a slow down.

For oil outlet temperature in main, crankpin and crosshead bearings two high temperature alarm levels including deviation alarm apply. The first level of the high temperature / deviation alarm is indicated in the alarm panel while the second level activates a slow down.

In the Extent of Delivery, there are three options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 75 133</td>
<td>Temperature sensors fitted to main bearings</td>
</tr>
<tr>
<td>4 75 134</td>
<td>Temperature sensors fitted to main bearings, crankpin bearings, crosshead bearings and for moment compensator, if any</td>
</tr>
<tr>
<td>4 75 135</td>
<td>Temperature sensors fitted to main bearings, crankpin bearings and crosshead bearings</td>
</tr>
</tbody>
</table>

S42MC7, S35MC7, L35MC6 and S26MC6 engines are as standard specified with option 4 75 133.
Control Devices

The control devices mainly include a position switch (ZS) or a position transmitter (ZT) and solenoid valves (ZV) which are listed in Table 18.06.02 below. The sensor identification codes are listed in Table 18.07.01.

<table>
<thead>
<tr>
<th>Sensor id. code</th>
<th>Point of location</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZV 1103</td>
<td>Solenoid valve for engine emergency stop</td>
</tr>
<tr>
<td>XS/PS 1106</td>
<td>Reset shut down at emergency</td>
</tr>
<tr>
<td>ZS 1109-A/B C</td>
<td>Turning gear – disengaged</td>
</tr>
<tr>
<td>ZS 1110-A/B C</td>
<td>Turning gear – engaged</td>
</tr>
<tr>
<td>ZS 1111-A/B C</td>
<td>Main starting valve – blocked</td>
</tr>
<tr>
<td>ZS 1112-A/B C</td>
<td>Main starting valve – in service</td>
</tr>
<tr>
<td>ZV 1114 C</td>
<td>Slow turning valve</td>
</tr>
<tr>
<td>ZS 1116-A/B C</td>
<td>Start air distribution system in service</td>
</tr>
<tr>
<td>ZS 1117-A/B C</td>
<td>Start air distribution system, blocked</td>
</tr>
<tr>
<td>PS 1118</td>
<td>Manoeuvring system in Emergency Control</td>
</tr>
<tr>
<td>ZV 1211-A/B C</td>
<td>Activate main starting valves - open</td>
</tr>
<tr>
<td>ZS 1122</td>
<td>Switch at change-over mechanism - change safety system reset between local telegraph and engine side console</td>
</tr>
<tr>
<td>XC 1126</td>
<td>I/P converter for VIT control (Only engines with VIT)</td>
</tr>
<tr>
<td>ZV 1127</td>
<td>Solenoid valve for control of VIT system in stop or Astern funktionl (Only engines with VIT)</td>
</tr>
<tr>
<td>PS 1133</td>
<td>Cancel of tacho alarm from safety system when Stop is ordered</td>
</tr>
<tr>
<td>PS 1134</td>
<td>Gives signal when »Bridge control«</td>
</tr>
<tr>
<td>ZV 1136</td>
<td>Remote stop solenoid valve</td>
</tr>
<tr>
<td>ZV 1137</td>
<td>Remote start solenoid valve</td>
</tr>
<tr>
<td>ZS 1138</td>
<td>Reversing cylinder Ahead position</td>
</tr>
<tr>
<td>ZS 1139</td>
<td>Reversing cylinder Astern position</td>
</tr>
<tr>
<td>ZV 1141</td>
<td>Solenoid valve for rev.cyl activation, direktion Ahead, during remote control</td>
</tr>
<tr>
<td>ZV 1142</td>
<td>Solenoid valve for rev.cyl activation, direktion Astern, during remote control</td>
</tr>
<tr>
<td>PT 1149</td>
<td>Pilot pressure to actuator for V.I.T. system (Only engines with VIT)</td>
</tr>
<tr>
<td>E 1180</td>
<td>Electric motor, auxiliary blower</td>
</tr>
<tr>
<td>E 1181</td>
<td>Electric motor, turning gear</td>
</tr>
<tr>
<td>E 1182</td>
<td>Actuator for electronic governor</td>
</tr>
<tr>
<td>ZV 8020 C</td>
<td>Fuel oil cut-off at engine inlet (shut down), Germanischer Lloyd only</td>
</tr>
<tr>
<td>ZT 8203 C</td>
<td>Confirm cylinder lubricator piston movement, cyl/cy</td>
</tr>
<tr>
<td>ZV 8204</td>
<td>Activate cylinder lubricator, cyl/cyl</td>
</tr>
<tr>
<td>PS 8603 C</td>
<td>Scavenge air receiver, auxiliary blower control</td>
</tr>
</tbody>
</table>

Table 18.06.02: Control devices on engine
Identification of instruments

The measuring instruments are identified by a combination of letters and a position number:

Measured variables

First letters:
- DS: Density switch
- DT: Density transmitter
- FT: Flow transmitter
- FS: Flow switch
- GT: Gauging transmitter (Index, load)
- LI: Level indication, local
- LS: Level switch
- LT: Level transmitter
- PDI: Pressure difference indication, local
- PDS: Pressure difference switch
- PDT: Pressure difference transmitter
- PI: Pressure indication, local
- PS: Pressure switch
- PT: Pressure transmitter
- ST: Speed transmitter
- TC: Thermo couple (NiCr-Ni)
- TE: Temperature element (Pt 100)
- TI: Temperature indication, local
- TS: Temperature switch
- VS: Viscosity switch
- VT: Viscosity transmitter
- WI: Vibration indication, local
- WS: Vibration switch
- WT: Vibration transmitter
- XC: Unclassified control
- XS: Unclassified switch
- XT: Unclassified transmitter
- ZS: Position switch
- ZT: Position transmitter (proximity switch)
- ZV: Position valve (solenoid valve)

Location of measuring point

Ident. number:
- 11xx: Manoeuvring system
- 12xx: Hydraulic power supply system
- 14xx: Combustion pressure supervision
- 20xx: ECS to/from safety system
- 21xx: ECS to/from remote control system
- 22xx: ECS to/from alarm system
- 30xx: ECS miscellaneous input/output
- 40xx: Tacho/crankshaft position system
- 41xx: Engine cylinder components
- 50xx: VOC, supply system
- 51xx: VOC, sealing oil system
- 52xx: VOC, control oil system
- 53xx: VOC, other related systems

- 54xx: VOC, engine related components
- 80xx: Fuel oil system
- 81xx: Lubricating oil system
- 82xx: Cylinder lube oil system
- 83xx: Stuffing box drain system
- 84xx: Cooling water systems
- 85xx: Compressed air systems
- 86xx: Scavenge air system
- 87xx: Exhaust gas system
- 88xx: Miscellaneous functions
- 90xx: Project specific functions

- xxxx-A: Alternative redundant sensors
- xxxx-1: Cylinder/turbocharger numbers

ECS: Engine Control System
VOC: Volatile Organic Compound

Functions

Secondary letters:
- A: Alarm
- AH: Alarm, high
- AL: Alarm, low
- C: Control
- H: High
- I: Indication
- L: Low
- R: Recording
- S: Switching
- X: Unclassified function
- Y: Slow down
- Z: Shut down

Repeated signals

Signals which are repeated for example for each cylinder or turbocharger are provided with a suffix number indicating the location, ‘1’ for cylinder 1 etc.

If redundant sensors are applied for the same measuring point, the suffix is a letter: A, B, C etc.

Examples:

- TI 8005 indicates a local temperature indication (thermometer) in the fuel oil system.
- ZS 1112-A and ZS 1112-B indicate that there are two position switches in the manouvring system, A and B for control of the main starting air valve position.
- PT 8501-ALY indicates a pressure transmitter located in the control air supply for remote indication, alarm for low pressure and slow down for low pressure.

Table 18.07.01: Identification of instruments
Dispatch Pattern, Testing, Spares and Tools
Dispatch Pattern, Testing, Spares and Tools

Painting of Main Engine

The painting specification, Section 19.02, indicates the minimum requirements regarding the quality and the dry film thickness of the coats of, as well as the standard colours applied on MAN B&W engines built in accordance with the ‘Copenhagen’ standard.

Paints according to builder’s standard may be used provided they at least fulfil the requirements stated.

Dispatch Pattern

The dispatch patterns are divided into two classes, see Section 19.03:

A: Short distance transportation and short term storage
B: Overseas or long distance transportation or long term storage.

Short distance transportation (A) is limited by a duration of a few days from delivery ex works until installation, or a distance of approximately 1,000 km and short term storage.

The duration from engine delivery until installation must not exceed 8 weeks.

Dismantling of the engine is limited as much as possible.

Overseas or long distance transportation or long term storage require a class B dispatch pattern.

The duration from engine delivery until installation is assumed to be between 8 weeks and maximum 6 months.

Dismantling is effected to a certain degree with the aim of reducing the transportation volume of the individual units to a suitable extent.

Note:
Long term preservation and seaworthy packing are always to be used for class B.

Furthermore, the dispatch patterns are divided into several degrees of dismantling in which ‘1’ comprises the complete or almost complete engine. Other degrees of dismantling can be agreed upon in each case.

When determining the degree of dismantling, consideration should be given to the lifting capacities and number of crane hooks available at the engine maker and, in particular, at the yard (purchaser).

The approximate masses of the sections appear in Section 19.04. The masses can vary up to 10% depending on the design and options chosen.

Lifting tools and lifting instructions are required for all levels of dispatch pattern. The lifting tools (4 12 110 or 4 12 111), are to be specified when ordering and it should be agreed whether the tools are to be returned to the engine maker (4 12 120) or not (4 12 121).

MAN Diesel’s recommendations for preservation of disassembled/ assembled engines are available on request.

Furthermore, it must be considered whether a drying machine, option 4 12 601, is to be installed during the transportation and/or storage period.

Shop trials/Delivery Test

Before leaving the engine maker’s works, the engine is to be carefully tested on diesel oil in the presence of representatives of the yard, the shipowner and the classification society.

The shop trial test is to be carried out in accordance with the requirements of the relevant classification society, however a minimum as stated in Section 19.05.
MAN Diesel's recommendations for shop trial, quay trial and sea trial are available on request.

An additional test is required for measuring the NOx emissions, for plants with FPP or CPP, EoD 4 06 060a or 4 06 060b respectively.

Spare Parts

List of spares, unrestricted service

The tendency today is for the classification societies to change their rules such that required spare parts are changed into recommended spare parts.

MAN Diesel, however, has decided to keep a set of spare parts included in the basic extent of delivery (4 87 601) covering the requirements and recommendations of the major classification societies, see Section 19.06.

This amount is to be considered as minimum safety stock for emergency situations.

Additional spare parts recommended by MAN Diesel

The above-mentioned set of spare parts can be extended with the 'Additional Spare Parts Recommended by MAN Diesel' (option: 4 87 603), which facilitates maintenance because, in that case, all the components such as gaskets, sealings, etc. required for an overhaul will be readily available, see Section 19.07.

Wearing parts

The consumable spare parts for a certain period are not included in the above mentioned sets, but can be ordered for the first 1, 2, up to 10 years' service of a new engine (option: 4 87 629), a service year being assumed to be 6,000 running hours.

The wearing parts supposed to be required, based on our service experience, are divided into 14 groups, see Table A in Section 19.08, each group including the components stated in Tables B.

Large spare parts, dimensions and masses

The approximate dimensions and masses of the larger spare parts are indicated in Section 19.09. A complete list will be delivered by the engine maker.

Tools

List of standard tools

The engine is delivered with the necessary special tools for overhauling purposes. The extent, dimensions and masses of the main tools is stated in Section 19.10. A complete list will be delivered by the engine maker.

Tool Panels

Most of the tools are arranged on steel plate panels (EoD 4 88 660) see Section 19.11 ‘Tool Panels'.

It is recommended to place the panels close to the location where the overhaul is to be carried out.
Specification for painting of main engine

<table>
<thead>
<tr>
<th>Components to be painted before shipment from workshop</th>
<th>Type of paint</th>
<th>No. of coats/ Total dry film thickness µm</th>
<th>Colour:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component/surfaces, inside engine, exposed to oil and air</td>
<td>Engine alkyd primer, weather resistant Oil and acid resistant alkyd paint. Temperature resistant to minimum 80 °C.</td>
<td>2/80 1/30</td>
<td>Free White: RAL 9010 DIN N:0:0.5 MUNSELL N-9.5</td>
</tr>
<tr>
<td>1. Unmachined surfaces all over. However cast type crankthrows, main bearing cap, crosshead bearing cap, crankpin bearing cap, pipes inside crankcase and chainwheel need not to be painted but the cast surface must be cleaned of sand and scales and kept free of rust.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Components, outside engine</td>
<td>Engine alkyd primer, weather resistant Final alkyd paint resistant to salt water and oil, option: 4 81 103.</td>
<td>2/80 1/30</td>
<td>Free Light green: RAL 6019 DIN 23:2:2 MUNSELL10GY 8/4</td>
</tr>
<tr>
<td>2. Engine body, pipes, gallery, brackets etc. Delivery standard is in a primed and finally painted condition, unless otherwise stated in the contract.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat affected components:</td>
<td>Paint, heat resistant to minimum 200 °C.</td>
<td>2/60</td>
<td>Alu: RAL 9006 DIN N:0:2 MUNSELL N-7.5</td>
</tr>
<tr>
<td>Components affected by water and cleaning agents</td>
<td>protection of the components exposed to moderately to severely corrosive environment and abrasion.</td>
<td>2/75</td>
<td>Free</td>
</tr>
<tr>
<td>4. Scavenge air cooler box inside.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Gallery plates topside. Engine alkyd primer, weather resistant.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Purchased equipment and instruments painted in makers colour are acceptable unless otherwise stated in the contract.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tools</td>
<td>Oil resistant paint.</td>
<td>2/60</td>
<td>Orange red: RAL 2004 DIN:6:7:2 MUNSELL N-7.5r 6/12</td>
</tr>
<tr>
<td>Unmachined surfaces all over on handtools and lifting tools.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purchased equipment painted in makers colour is acceptable, unless otherwise stated in the contract/drawing.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tool panels</td>
<td>Oil resistant paint.</td>
<td>2/60</td>
<td>Light grey: RAL 7038 DIN:24:1:2 MUNSELL N-7.5</td>
</tr>
</tbody>
</table>

Note: All paints are to be of good quality. Paints according to builder’s standard may be used provided they at least fulfil the above requirements. The data stated are only to be considered as guidelines. Preparation, number of coats, film thickness per coat, etc. have to be in accordance with the paint manufacturer’s specifications.

Fig. 19.02.01: Painting of main engine: 4 81 101, 4 81 102 or 4 81 103
Dispatch Pattern

The relevant engine supplier is responsible for the actual execution and delivery extent. As differences may appear in the individual suppliers’ extent and dispatch variants.

Class A (option 4 12 020):
Short distance transportation limited by duration of transportation time within a few days or a distance of approximately 1000 km and short term storage.
Duration from engine delivery to installation must not exceed eight weeks.
Dismantling must be limited.

Class B (option 4 12 030):
Overseas and other long distance transportation, as well as long-term storage.
Dismantling is effected to reduce the transport volume to a suitable extent.
Long-term preservation and seaworthy packing must always be used.

Classes A + B comprise the following basic variants:

A1 + B1 (option 4 12 021 + 4 12 031)
• Engine complete

A2 + B2 (option 4 12 022 + 4 12 032)
• Top section including cylinder frame complete, cylinder covers complete, scavenger air receiver including cooler box and cooler insert, turbocharger(s), camshaft, piston rods complete and galleries with pipes.
• Bottom section including bedplate complete, frame box complete, connecting rods, turning gear, crankshaft complete and galleries.
• Remaining parts, stay bolts, chains, etc.

Fig. 19.03.01a: Dispatch pattern, engine with turbocharger on exhaust side (4 59 122)
A3 + B3 (option 4 12 023 + 4 12 033)
- Top section including cylinder frame complete, cylinder covers complete, scavenge air receiver including cooler box and cooler insert, turbocharger(s), camshaft, piston rods complete and galleries with pipes.
- Frame box section including frame box complete, chain drive connecting rods and galleries.
- Bedplate/crankshaft section including bedplate complete, crankshaft complete with wheels and turning gear.
- Remaining parts, stay bolts, chains, etc.

Fig. 19.03.01b: Dispatch pattern, engine with turbocharger on exhaust side (4 59 122)
A4 + B4 (option 4 12 024 + 4 12 034)
- Top section including cylinder frame complete, cylinder covers complete, camshaft, piston rods complete and galleries with pipes on camshaft side.
- Exhaust receiver with pipes.
- Scavenge air receiver with galleries and pipes.
- Turbocharger.
- Air cooler box with cooler insert.
- Frame box section including frame box complete, chain drive, connecting rods and galleries.
- Crankshaft with wheels.
- Bedplate with pipes and turning gear.
- Remaining parts, stay bolts, chains, etc.

Note!
The engine supplier is responsible for the necessary lifting tools and lifting instructions for transportation purpose to the yard.

The delivery extent of tools, ownership and lending/lease conditions are to be stated in the contract. Furthermore, it must be stated whether a dehumidifier is to be installed during the transportation and/or storage period.

Fig. 19.03.01c: Dispatch pattern, engine with turbocharger on exhaust side (4 59 122)
Dispatch Pattern

The relevant engine supplier is responsible for the actual execution and delivery extent. As differences may appear in the individual suppliers’ extent and dispatch variants.

Class A (option 4 12 020):
Short distance transportation limited by duration of transportation time within a few days or a distance of approximately 1000 km and short term storage.
Duration from engine delivery to installation must not exceed eight weeks.
Dismantling must be limited.

Class B (option 4 12 030):
Overseas and other long distance transportation, as well as long-term storage.
Dismantling is effected to reduce the transport volume to a suitable extent.
Long-term preservation and seaworthy packing must always be used.

Classes A + B comprise the following Basic Variants

- **A1 + B1** (option 4 12 021 + 4 12 031)
 - Engine Complete

- **A2 + B2** (option 4 12 022 + 4 12 032)
 - Top section including cylinder frame complete, cylinder covers complete, scavenge air receiver including cooler box and cooler insert, turbocharger(s), camshaft, piston rods complete and galleries with pipes.
 - Bottom section including bedplate complete, frame box complete, connecting rods, turning gear, crankshaft complete and galleries.
 - Remaining parts, stay bolts, chains, suction pipe, etc.

Fig. 19.03.02a: Dispatch pattern, engine with turbocharger on on aft end (4 59 121)
A3 + B3 (option 4 12 023 + 4 12 033)

- Top section including cylinder frame complete, cylinder covers complete, scavenging air receiver including cooler box and cooler insert, turbocharger(s), camshaft, piston rods complete and galleries with pipes.
- Frame box section including frame box complete, chain drive, connecting rods and galleries.
- Bedplate/crankshaft section including bedplate complete, crankshaft complete with wheels and turning gear.
- Remaining parts, stay bolts, chains, suction pipe, etc.

Fig. 19.03.02b: Dispatch pattern, engine with turbocharger on on aft end (4 59 121)
A4 + B4 (option 4 12 024 + 4 12 034)
- Top section including cylinder frame complete, cylinder covers complete, camshaft, piston rods complete and galleries with pipes on camshaft side.
- Exhaust receiver with pipes.
- Scavenge air receiver with galleries and pipes, without air cooler box.
- Turbocharger.
- Air cooler box with galleries.
- Air cooler insert.
- Frame box section including frame box complete, chain drive, connecting rods and galleries.
- Crankshaft with wheels.
- Bedplate with pipes and turning gear.
- Remaining parts, stay bolts, chains, suction pipe, auxiliary blower, etc.

Note!
The engine supplier is responsible for the necessary lifting tools and lifting instructions for transportation purpose to the yard.

The delivery extent of tools, ownership and lending/lease conditions are to be stated in the contract.
Furthermore, it must be stated whether a dehumidifier is to be installed during the transportation and/or storage period.

Fig. 19.03.02c: Dispatch pattern, engine with turbocharger on on aft end (4 59 121)
Dispatch pattern, list of masses and dimensions

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Section</th>
<th>5 cylinders</th>
<th>6 cylinders</th>
<th>7 cylinders</th>
<th>8 cylinders</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mass (t)</td>
<td>Length (m)</td>
<td>Mass (t)</td>
<td>Length (m)</td>
</tr>
<tr>
<td>A1+B1</td>
<td>Engine complete</td>
<td>202.1</td>
<td>8.7</td>
<td>232.0</td>
<td>9.6</td>
</tr>
<tr>
<td></td>
<td>Top section</td>
<td>77.0</td>
<td>8.7</td>
<td>91.5</td>
<td>9.6</td>
</tr>
<tr>
<td></td>
<td>Bottom section</td>
<td>114.9</td>
<td>8.3</td>
<td>129.5</td>
<td>9.2</td>
</tr>
<tr>
<td></td>
<td>Remaining parts</td>
<td>10.2</td>
<td>10.9</td>
<td>11.6</td>
<td>12.4</td>
</tr>
<tr>
<td>A2+B2</td>
<td>Top section</td>
<td>77.0</td>
<td>8.7</td>
<td>91.5</td>
<td>9.6</td>
</tr>
<tr>
<td></td>
<td>Bottom section</td>
<td>114.9</td>
<td>8.3</td>
<td>129.5</td>
<td>9.2</td>
</tr>
<tr>
<td></td>
<td>Remaining parts</td>
<td>10.2</td>
<td>10.9</td>
<td>11.6</td>
<td>12.4</td>
</tr>
<tr>
<td>A3+B3</td>
<td>Top section</td>
<td>77.0</td>
<td>8.7</td>
<td>91.5</td>
<td>9.6</td>
</tr>
<tr>
<td></td>
<td>Frame box section</td>
<td>46.3</td>
<td>8.1</td>
<td>52.9</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>Bedplate/Crankshaft</td>
<td>68.6</td>
<td>6.8</td>
<td>76.6</td>
<td>7.7</td>
</tr>
<tr>
<td></td>
<td>Remaining parts</td>
<td>10.2</td>
<td>10.9</td>
<td>11.6</td>
<td>12.4</td>
</tr>
<tr>
<td>A4+B4</td>
<td>Top section</td>
<td>52.4</td>
<td>6.6</td>
<td>61.8</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td>Exhaust receiver</td>
<td>5.5</td>
<td>5.5</td>
<td>6.2</td>
<td>6.4</td>
</tr>
<tr>
<td></td>
<td>Scavenge air receiver</td>
<td>5.9</td>
<td>6.6</td>
<td>7.5</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td>Turbocharger - each</td>
<td>3.7</td>
<td>5.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Air cooler - insert</td>
<td>1.8</td>
<td>3.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Air cooler box</td>
<td>6.4</td>
<td>2.0</td>
<td>6.4</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>Frame box section</td>
<td>46.7</td>
<td>6.2</td>
<td>53.3</td>
<td>7.1</td>
</tr>
<tr>
<td></td>
<td>Crankshaft</td>
<td>35.0</td>
<td>6.5</td>
<td>39.1</td>
<td>7.4</td>
</tr>
<tr>
<td></td>
<td>Bedplate</td>
<td>33.1</td>
<td>6.3</td>
<td>37.0</td>
<td>7.2</td>
</tr>
<tr>
<td></td>
<td>Remaining parts</td>
<td>11.7</td>
<td>12.4</td>
<td>13.1</td>
<td>14.0</td>
</tr>
</tbody>
</table>

The weights stated are for standard engines with semi-built crankshaft with forged throws, crosshead guides integrated in the frame box, and MAN Diesel turbocharger. The final weights are to be confirmed by the engine supplier, as variations in major engine components due to the use of local standards (plate thickness etc.), size of tuning wheel, type of turbocharger and the choice of cast/welded or forged component designs may increase the total weight by up to 10%. All masses and dimensions in the dispatch pattern are therefore approximate and do not include packing and lifting tools.

Note: Some engines are equipped with moment compensator and/or turning wheel. However, the weights for these components are not included in dispatch pattern.

Table 19.04.01: Dispatch pattern, list of masses and dimensions: Engine with turbocharger located on aft end (4 59 123)
<table>
<thead>
<tr>
<th>Pattern</th>
<th>Section</th>
<th>5 cylinders</th>
<th>6 cylinders</th>
<th>7 cylinders</th>
<th>8 cylinders</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mass (t)</td>
<td>Length (m)</td>
<td>Mass (t)</td>
<td>Length (m)</td>
</tr>
<tr>
<td>A1+B1</td>
<td>Engine complete</td>
<td>200.1</td>
<td>8.3</td>
<td>230.9</td>
<td>9.2</td>
</tr>
<tr>
<td>A2+B2</td>
<td>Top section</td>
<td>76.9</td>
<td>7.1</td>
<td>91.5</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>Bottom section</td>
<td>115.1</td>
<td>8.3</td>
<td>129.7</td>
<td>9.2</td>
</tr>
<tr>
<td></td>
<td>Remaining parts</td>
<td>8.8</td>
<td>9.5</td>
<td>10.2</td>
<td>11.0</td>
</tr>
<tr>
<td>A3+B3</td>
<td>Top section</td>
<td>76.9</td>
<td>7.1</td>
<td>91.6</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>Frame box section</td>
<td>46.5</td>
<td>8.3</td>
<td>53.1</td>
<td>9.2</td>
</tr>
<tr>
<td></td>
<td>Bedplate/Crankshaft</td>
<td>68.6</td>
<td>6.8</td>
<td>76.6</td>
<td>7.7</td>
</tr>
<tr>
<td></td>
<td>Remaining parts</td>
<td>8.8</td>
<td>9.5</td>
<td>10.2</td>
<td>11.0</td>
</tr>
<tr>
<td>A4+B4</td>
<td>Top section</td>
<td>53.8</td>
<td>7.1</td>
<td>53.3</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>Exhaust receiver</td>
<td>5.2</td>
<td>5.5</td>
<td>5.9</td>
<td>6.4</td>
</tr>
<tr>
<td></td>
<td>Scavenge air receiver</td>
<td>12.0</td>
<td>6.2</td>
<td>13.8</td>
<td>7.1</td>
</tr>
<tr>
<td></td>
<td>Turbocharger - each</td>
<td>3.7</td>
<td>5.1</td>
<td>5.1</td>
<td>7.4</td>
</tr>
<tr>
<td></td>
<td>Air cooler - insert</td>
<td>1.8</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>Frame box section</td>
<td>46.8</td>
<td>8.3</td>
<td>53.5</td>
<td>9.2</td>
</tr>
<tr>
<td></td>
<td>Crankshaft</td>
<td>35.0</td>
<td>6.5</td>
<td>39.1</td>
<td>7.4</td>
</tr>
<tr>
<td></td>
<td>Bedplate</td>
<td>33.1</td>
<td>6.3</td>
<td>37.0</td>
<td>7.2</td>
</tr>
<tr>
<td></td>
<td>Remaining parts</td>
<td>9.3</td>
<td>10.0</td>
<td>10.7</td>
<td>11.4</td>
</tr>
</tbody>
</table>

The weights stated are for standard engines with semi-built crankshaft with forged throws, crosshead guides integrated in the frame box, and MAN Diesel turbocharger. The final weights are to be confirmed by the engine supplier, as variations in major engine components due to the use of local standards (plate thickness etc.), size of tuning wheel, type of turbocharger and the choice of cast/welded or forged component designs may increase the total weight by up to 10%. All masses and dimensions in the dispatch pattern are therefore approximate and do not include packing and lifting tools.

Note: Some engines are equipped with moment compensator and/or turning wheel. However, the weights for these components are not included in dispatch pattern.
Shop test

Minimum delivery test: 4 14 001

- Starting and manoeuvring test at no load
- Load test
 Engine to be started and run up to 50% of Specified MCR (M) in 1 hour

Followed by:

- 0.50 hour running at 25% of specified MCR
- 0.50 hour running at 50% of specified MCR
- 0.50 hour running at 75% of specified MCR
- 1.00 hour running at 100% of specified MCR
- 0.50 hour running at 110% of specified MCR

Only for Germanischer Lloyd:

- 0.75 hour running at 110% of specified MCR

Governor tests, etc:

- Governor test
- Minimum speed test
- Overspeed test
- Shut down test
- Starting and reversing test
- Turning gear blocking device test
- Start, stop and reversing from the Local Opera-ting Panel (LOP)

Before leaving the factory, the engine is to be carefully tested on diesel oil in the presence of representatives of Yard, Shipowner, Classification Society, and MAN Diesel.

At each load change, all temperature and pressure levels etc. should stabilise before taking new engine load readings.

Fuel oil analysis is to be presented.
All tests are to be carried out on diesel or gas oil.

EIAPP certificate

An additional test may be required for obtaining the ‘Engine Prevention’ Certificate, which states that the engine complies with IMO NOx emission limitations 4 06 060.

An additional test is to be performed for: ‘Individual Engines’ and for ‘Parent Engines’ if the group certificate is not available - to be checked at MAN Diesel.

‘Member Engines’ to existing ‘Parent Engines’ do not need an additional test.

The tests, if required, are:
E3, marine engine, propeller law for FPP 4 06 060a or
E2, marine engine, constant speed for CPP 4 06 060b.

Fig. 9.05.01: Shop trial running/delivery test: 4 14 001
List of Spare Parts, Unrestricted Service

Spare parts are requested by the following Classes only: GL, KR, NK and RS, while just recommended by: ABS, DNV and LR, but neither requested nor recommended by: BV, CCS and RINA.

Cylinder cover, plate 901 and others
1. Cylinder cover with fuel, exhaust and starting valves, indicator valve and sealing rings (disassembled).
 ½ set Studs for 1 cylinder cover

Piston, plate 902
1. Piston complete (with cooling pipe), piston rod, piston rings and stuffing box, studs and nuts
 1 set Piston rings for 1 cylinder

Cylinder liner, plate 903
1. Cylinder liner inclusive of sealing rings and gaskets.

Cylinder lubricator, plate 903 *)
 Standard Spare parts
1. 1 set Spares for MAN B&W Alpha lubricator for 1 cyl.
1. Lubricator
2. Feed back sensor, complete
1. Suction filter element for pump station
1. Pressure filter element for pump station
1. Complete sets of O-rings for lubricator (depending on No. of lubricating per. cylinder)
6. 3A, 3 pcs. 12A ceramic or sand filled fuses 6.3 x 32 mm, for MCU, BCU & SBU
2. LED's for visual feed back indication or
 1 set LED's for visual feed back indication

Connecting rod, and crosshead bearing, plate 904
1. Telescopic pipe with bushing for 1 cylinder
1. Crankpin bearing shells in 2/2 with studs and nuts
1. Crosshead bearing shell lower part with studs and nuts
2. Thrust piece

Main bearing and thrust block, plate 905
1. 1 set Thrust pads for one face of each size, if different for ‘ahead’ and ‘astern’

Chain drive, plate 906 *)
1. Of each type of bearings for camshaft at chain drive, chain tightenener and intermediate shaft
6. Camshaft chain links. Only for ABS, DNV, LR, NK and RS
1. Mechanically driven cylinder lubricator drive: 6 chain links or gear wheels

1. Guide ring 2/2 for camshaft bearing

Starting valve, plate 907
1. Starting valve, complete

Exhaust valve, plate 908
2. Exhaust valves complete. 1 only for GL)
 1. Pressure pipe for exhaust valve pipe

Fuel pump, plate 909
1. Fuel pump barrel, complete with plunger
1. High-pressure pipe, each type
1. Suction and puncture valve, complete

Fuel valve, plate 909
2. Fuel valves per cylinder for all cylinders on one engine, and a sufficient number of valve parts, excluding the body, to form with those fitted on each cylinder for a complete engine set for BV, CCS, GL, KR, LR, NK, RINA, RS and IACS
 1 set Fuel valves for all cylinders on one engine for DNV

Turbocharger, plate 910
1. Set of maker's standard spare parts
 1 a) Spare rotor for one turbocharger, including: compressor wheel, rotor shaft with turbine blades and partition wall, if any

Scavenge air blower, plate 910
1 set Rotor, rotor shaft, gear wheel or equivalent
 a) working parts
1 set Bearings for electric motor
1 set Bearings for blow er wheel
1 set Belt, if applied
1 set Packing for blower wheel

Bedplate, plate 912
1. Main bearing shell in 2/2 of each size
 1 set Studs and nuts for 1 main bearing

1) MD required spare parts.

a) Only required for RS. To be ordered separately as option: 4 87 660 for other classification societies.

Please note: Plate number refers to Instruction Book, Vol. III containing plates with spare parts.

Fig. 19.06.01: List of spare parts, unrestricted service: 4 87 601
Additional Spares
For easier maintenance and increased security in operation

Beyond class requirements

Cylinder cover, section 90101
- 4 Studs for exhaust valve
- 4 Nuts for exhaust valve
- ½ set O-rings for cooling jacket
- 1 Cooling jacket
- ½ set Sealing between cyl.cover and liner
- 4 Spring housings for fuel valv

Hydraulic tool for cylinder cover, section 90161
- 1 set Hydraulic hoses with protection hose complete with couplings
- 8 pcs O-rings with backup rings, upper
- 8 pcs O-rings with backup rings, lower

Piston and piston rod, section 90201
- 1 box Locking wire, L=63 m
- 5 Piston rings of each kind
- 2 D-rings for piston skirt
- 2 D-rings for piston rod

Piston rod stuffing box, section 90205
- 15 Self locking nuts
- 5 O-rings
- 5 Top scraper rings
- 15 Pack sealing rings
- 10 Cover sealing rings
- 120 Lamellas for scraper rings
- 30 Springs for top scraper and sealing rings
- 20 Springs for scraper rings

Cylinder frame, section 90301
- ½ set Studs for cylinder cover for one cyl.
- 1 Bushing

Cylinder liner and cooling jacket, section 90302
- 1 Cooling jacket of each kind
- 4 Non return valves
- 1 set O-rings for one cylinder liner
- ½ set Gaskets for cooling water connection
- ½ set O-rings for cooling water pipes
- 1 set Cooling water pipes between liner and cover for one cylinder

Cylinder Lubricating Oil System, section 90306
- 1 set Spares for MAN B&W Alpha lubricating oil system for 1cyl.
- 1 Lubricator
- 2 Feed back sensor, complete
- 1 Complete sets of O-rings for lubricator (depending on No. of lubricating nozzles per. cylinder)

Connecting rod and crosshead, section 90401
- 1 Telescopic pipe
- 2 Thrust piece

HPS Hydraulic Power Supply, section 906
- 1 Delivery pump
- 1 Start up pump
- 1 Pressure relief valve
- 1 Pumps short cutting valve
- 1 set Check valve Cartridge (3 pcs)

Engine Control System, section 906
- 1 set Fuses for MPC, TSA, CNR
- 1 Segment for triggerring

HCU Hydraulic Cylinder Unit, section 906
- 1 set Packings

Main starting valve, section 90702
- 1 Repair kit for main actuator
- 1 Repair kit for main ball valve
- 1 *) Repair kit for actuator, slow turning
- 1 *) Repair kit for ball valve, slow turning

*) if fitted

Starting valve, section 90704
- 2 Locking plates
- 2 Piston
- 2 Spring
- 2 Bushing
- 1 set O-ring
- 1 Valve spindle

Note:
Section numbers refers to Instruction Book, Vol. III containing plates with spareparts

Fig. 19.07.01a: Additional spare parts beyond class requirements or recommendation, for easier maintenance and increased availability, option: 4 87 603
Exhaust valve, section 90801
1. Exhaust valve spindle
2. Exhaust valve seat
1/2 set O-ring exhaust valve/cylinder cover
4. Piston rings
1/2 set Guide rings
1/2 set Sealing rings
1/2 set Safety valves
1 set Gaskets and O-rings for safety valve
1 Piston complete
1 Damper piston
1 set O-rings and sealings between air piston and exhaust valve housing/spindle
1 Liner for spindle guide
1 set Gaskets and O-rings for cool.w.conn.
1 Conical ring in 2/2
1 set O-rings for spindle/air piston
1 set Non-return valve

Fuel oil high pressure pipes, section 90913
1. High pressure pipe, from fuel oil pressure booster to fuel valve
1. High pressure pipe from actuator to exhaust valve
1 set O-rings for high pressure pipes

Overflow valve, section 90915
1. Overflow valve, complete
1. O-rings of each kind

Turbocharger, section 91000
1. Spare rotor, complete with bearings
1. Spare part set for turbocharger

Scavenge air receiver, section 91001
2. Non-return valves complete
1. Compensator

Fuel oil high pressure pipes, section 90913
1. High pressure pipe, from fuel oil pressure booster to fuel valve
1. High pressure pipe from actuator to exhaust valve
1 set O-rings for high pressure pipes

Turbocharger, section 91000
1. Spare rotor, complete with bearings
1. Spare part set for turbocharger

Scavenge air receiver, section 91001
2. Non-return valves complete
1. Compensator

Exhaust pipes and receiver, section 91003
1. Compensator between TC and receiver
2. Compensator between exhaust valve and receiver
1 set Gaskets for each compensator

Air cooler, section 91005
16. Iron blocks (Corrosion blocks)

Safety valve, section 91101
1 set Gasket for safety valve
2. Safety valve, complete

Arrangement of safety cap, section 91104
1 set Bursting disc

Engine Lubricating System, section 912
1 set 10 µ filter

Note:
Section numbers refers to Instruction Book, Vol. III containing plates with spareparts

Fig. 19.07.01b: Additional spare parts beyond class requirements or recommendation, for easier maintenance and increased availability, option: 4 87 603
Wearing Parts

<table>
<thead>
<tr>
<th>Group No.</th>
<th>Section</th>
<th>Qty.</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>90101</td>
<td>50%</td>
<td>O-rings and gaskets for 1 cylinder</td>
</tr>
<tr>
<td>2</td>
<td>90161</td>
<td>50%</td>
<td>O-ring W / Back-up ring for 1 cylinder</td>
</tr>
<tr>
<td>3</td>
<td>90201</td>
<td>50%</td>
<td>Hose with union for 1 cylinder</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>50%</td>
<td>Locking wire 1,0MM L=63</td>
</tr>
<tr>
<td>5</td>
<td>90205</td>
<td>100%</td>
<td>Piston rings for 1 cylinder</td>
</tr>
<tr>
<td>6</td>
<td>90302</td>
<td>50%</td>
<td>O-rings / Sealing rings for Cylinder liner</td>
</tr>
<tr>
<td>7</td>
<td>90907</td>
<td>50%</td>
<td>Bearing Shells and Guide Disc for 1 Engine</td>
</tr>
<tr>
<td>8</td>
<td>90610</td>
<td>50%</td>
<td>O-rings, Packings and Gaskets for cooling water connections</td>
</tr>
<tr>
<td>9</td>
<td>90612</td>
<td>50%</td>
<td>Indicator valves for 1 Engine</td>
</tr>
<tr>
<td>10</td>
<td>90615-25</td>
<td>25%</td>
<td>Pull-rods for 1 Engine</td>
</tr>
<tr>
<td>11</td>
<td>90702</td>
<td>50%</td>
<td>Repair Kit for each type of valve for 1 Engine</td>
</tr>
<tr>
<td>12</td>
<td>90704</td>
<td>50%</td>
<td>O-rings, Packings and Gaskets for 1 Engine</td>
</tr>
<tr>
<td>13</td>
<td>90801</td>
<td>25%</td>
<td>Exhaust valve spindle for 1 Engine</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>25%</td>
<td>Exhaust valve W-bottom piece for 1 Engine</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>100%</td>
<td>Piston rings for exhaust valve air piston and oil piston for 1 Engine</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>100%</td>
<td>O-rings for water connections for 1 Engine</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>100%</td>
<td>Gasket for cooling for water connections for 1 Engine</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>100%</td>
<td>O-rings for oil connections for 1 Engine</td>
</tr>
<tr>
<td>19</td>
<td>91000</td>
<td>1</td>
<td>Slide bearing for turbocharger for 1 engine (roller bearings)</td>
</tr>
<tr>
<td>20</td>
<td>91000</td>
<td>1</td>
<td>Slide bearing for turbocharger for 1 engine (slide bearings)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Guide bearing for turbocharger for 1 engine (slide bearings)</td>
</tr>
</tbody>
</table>

Table 19.08.01a: Wearing parts, option 4 87 629
The wearing parts are divided into 20 groups, each including the components stated in Table A.

The average expected consumption of wearing parts is stated in tables B for 1, 2, 3... 10 years' service of a new engine, a service year being assumed to be of 6000 hours.

In order to find the expected consumption for a 6 cylinder engine during the first 18000 hours' service, the extent stated for each group in Table A is to be multiplied by the figures stated in the Table B (see the arrow), for the cylinder No. and service hours in question.

<table>
<thead>
<tr>
<th>Group No.</th>
<th>Description</th>
<th>Number of cylinders</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0-6000</td>
</tr>
<tr>
<td>1</td>
<td>O-rings and gaskets</td>
<td>4 5 6 7 8</td>
</tr>
<tr>
<td>2</td>
<td>Spring housing</td>
<td>0 0 0 0 0</td>
</tr>
<tr>
<td>3</td>
<td>O-ring W / Back-up ring</td>
<td>4 5 6 7 8</td>
</tr>
<tr>
<td>4</td>
<td>Hose with union</td>
<td>0 0 0 0 0</td>
</tr>
<tr>
<td>5</td>
<td>Set of piston rings</td>
<td>0 0 0 0 0</td>
</tr>
<tr>
<td>6</td>
<td>St. box, lamella / sealing rings</td>
<td>0 0 0 0 0</td>
</tr>
<tr>
<td>7</td>
<td>O-rings / Sealing rings Cyl. liner</td>
<td>0 0 0 0 0</td>
</tr>
<tr>
<td>8</td>
<td>Cylinder liners</td>
<td>0 0 0 0 0</td>
</tr>
<tr>
<td>9</td>
<td>Bearing Shells and Guide Disc</td>
<td>0 0 0 0 0</td>
</tr>
<tr>
<td>10</td>
<td>Packings and Gaskets</td>
<td>4 5 6 7 8</td>
</tr>
<tr>
<td>11</td>
<td>Pull-rods</td>
<td>0 0 0 0 0</td>
</tr>
<tr>
<td>12</td>
<td>Repair Kit for each type of valve</td>
<td>0 0 0 0 0</td>
</tr>
<tr>
<td>13</td>
<td>O-rings, Packings and Gaskets</td>
<td>4 5 6 7 8</td>
</tr>
<tr>
<td>14</td>
<td>Exhaust valve spindles / bottom pieces</td>
<td>0 0 0 0 0</td>
</tr>
<tr>
<td>15</td>
<td>Exhaust valve guide bushings</td>
<td>0 0 0 0 0</td>
</tr>
<tr>
<td>16</td>
<td>O-rings for exhaust valve</td>
<td>4 5 6 7 8</td>
</tr>
<tr>
<td>17</td>
<td>Fuel pump plungers</td>
<td>0 0 0 0 0</td>
</tr>
<tr>
<td>18</td>
<td>Suction/puncture valves, Sealing rings and Gaskets</td>
<td>0 0 0 0 0</td>
</tr>
<tr>
<td>19</td>
<td>Fuel valve guides and nozzles</td>
<td>0 0 0 0 0</td>
</tr>
<tr>
<td>20</td>
<td>Set bearings per TC (roller bearings)</td>
<td>0 0 0 0 0</td>
</tr>
<tr>
<td></td>
<td>Set bearings per TC (slide bearings)</td>
<td>0 0 0 0 0</td>
</tr>
</tbody>
</table>
Table B

<table>
<thead>
<tr>
<th>Group No.</th>
<th>Description</th>
<th>Service hours</th>
<th>0-18000</th>
<th>0-24000</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>O-rings and gaskets</td>
<td></td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Spring housing</td>
<td></td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>O-ring W / Back-up ring</td>
<td></td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>Hose with union</td>
<td></td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>Set of piston rings</td>
<td></td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>St. box, lamella / sealing rings</td>
<td></td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>O-rings / Sealing rings Cyl. liner</td>
<td></td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>Cylinder liners</td>
<td></td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>Bearing Shells and Guide Disc</td>
<td></td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>10</td>
<td>Packings and Gaskets</td>
<td></td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>11</td>
<td>Pull-rods</td>
<td></td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>12</td>
<td>Repair Kit for each type of valve</td>
<td></td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>13</td>
<td>O-rings, Packings and Gaskets</td>
<td></td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>14</td>
<td>Exhaust valve spindles / bottom pieces</td>
<td></td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>15</td>
<td>Exhaust valve guide bushings</td>
<td></td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>16</td>
<td>O-rings for exhaust valve</td>
<td></td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>17</td>
<td>Fuel pump plungers</td>
<td></td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>18</td>
<td>Suction/puncture valves, Sealing rings and Gaskets</td>
<td></td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>19</td>
<td>Fuel valve guides and nozzles</td>
<td></td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>20</td>
<td>Set bearings per TC (roller bearings)</td>
<td></td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>21</td>
<td>Set bearings per TC (slide bearings)</td>
<td></td>
<td>8</td>
<td>7</td>
</tr>
</tbody>
</table>

Table 19.08.01c: Wearing parts, option 4 87 629
<table>
<thead>
<tr>
<th>Group No.</th>
<th>Description</th>
<th>0-30000</th>
<th>0-36000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4 5 6 7 8</td>
<td>4 5 6 7 8</td>
</tr>
<tr>
<td>1</td>
<td>O-rings and gaskets</td>
<td>20 25 30 35 40</td>
<td>24 30 36 42 48</td>
</tr>
<tr>
<td>2</td>
<td>Spring housing</td>
<td>8 5 6 7 8</td>
<td>4 5 6 7 8</td>
</tr>
<tr>
<td>3</td>
<td>O-ring W / Back-up ring</td>
<td>20 25 30 35 40</td>
<td>24 30 36 42 48</td>
</tr>
<tr>
<td>4</td>
<td>Hose with union</td>
<td>4 5 6 7 8</td>
<td>8 10 12 14 16</td>
</tr>
<tr>
<td>5</td>
<td>Set of piston rings</td>
<td>12 15 18 21 24</td>
<td>16 20 24 28 32</td>
</tr>
<tr>
<td>6</td>
<td>St. box, lamella / sealing rings</td>
<td>8 10 12 14 16</td>
<td>12 15 18 21 24</td>
</tr>
<tr>
<td>7</td>
<td>O-rings / Sealing rings Cyl. liner</td>
<td>4 5 6 7 8</td>
<td>8 10 12 14 16</td>
</tr>
<tr>
<td>8</td>
<td>Cylinder liners</td>
<td>0 0 0 0 0</td>
<td>0 0 0 0 0</td>
</tr>
<tr>
<td>9</td>
<td>Bearing Shells and Guide Disc</td>
<td>4 5 6 7 8</td>
<td>8 10 12 14 16</td>
</tr>
<tr>
<td>10</td>
<td>Packings and Gaskets</td>
<td>20 25 30 35 40</td>
<td>24 30 36 42 48</td>
</tr>
<tr>
<td>11</td>
<td>Pull-rods</td>
<td>4 5 6 7 8</td>
<td>4 5 6 7 8</td>
</tr>
<tr>
<td>12</td>
<td>Repair Kit for each type of valve</td>
<td>12 15 18 21 24</td>
<td>16 20 24 28 32</td>
</tr>
<tr>
<td>13</td>
<td>O-rings, Packings and Gaskets</td>
<td>20 25 30 35 40</td>
<td>24 30 36 42 48</td>
</tr>
<tr>
<td>14</td>
<td>Exhaust valve spindles / bottom pieces</td>
<td>4 5 6 7 8</td>
<td>8 10 12 14 16</td>
</tr>
<tr>
<td>15</td>
<td>Exhaust valve guide bushings</td>
<td>8 10 12 14 16</td>
<td>16 20 24 28 32</td>
</tr>
<tr>
<td></td>
<td>O-rings for exhaust valve</td>
<td>20 25 30 35 40</td>
<td>24 30 36 42 48</td>
</tr>
<tr>
<td>17</td>
<td>Fuel pump plungers</td>
<td>0 0 0 0 0</td>
<td>0 4 5 6 7 8</td>
</tr>
<tr>
<td></td>
<td>Suction/puncture valves, Sealing rings and Gaskets</td>
<td>8 10 12 14 16</td>
<td>12 15 18 21 24</td>
</tr>
<tr>
<td>18</td>
<td>Fuel valve guides and nozzles</td>
<td>16 20 24 28 32</td>
<td>16 20 24 28 32</td>
</tr>
<tr>
<td>19</td>
<td>Set bearings per TC (roller bearings)</td>
<td>2 2 2 2 2</td>
<td>3 3 3 3 3</td>
</tr>
<tr>
<td>20</td>
<td>Set bearings per TC (slide bearings)</td>
<td>1 1 1 1 1</td>
<td>1 1 1 1 1</td>
</tr>
</tbody>
</table>

Table 19.08.01d: Wearing parts, option 4 87 629
<table>
<thead>
<tr>
<th>Group No.</th>
<th>Service hours</th>
<th>Number of cylinders</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4 5 6 7 8</td>
<td>0-42000</td>
</tr>
<tr>
<td></td>
<td>4 5 6 7 8</td>
<td>0-48000</td>
</tr>
<tr>
<td>1</td>
<td>O-rings and gaskets</td>
<td>28 35 42 49 56 32 40 48 56 64</td>
</tr>
<tr>
<td>2</td>
<td>Spring housing</td>
<td>4 5 6 7 8</td>
</tr>
<tr>
<td>3</td>
<td>O-ring W / Back-up ring</td>
<td>28 35 42 49 56 32 40 48 56 64</td>
</tr>
<tr>
<td>4</td>
<td>Hose with union</td>
<td>4 5 6 7 8</td>
</tr>
<tr>
<td>5</td>
<td>Set of piston rings</td>
<td>12 15 18 21 24 16 20 24 28 32</td>
</tr>
<tr>
<td>6</td>
<td>St. box, lamella / sealing rings</td>
<td>12 15 18 21 24 16 20 24 28 32</td>
</tr>
<tr>
<td>7</td>
<td>O-rings / Sealing rings Cyl. liner</td>
<td>8 10 12 14 16 16 20 24 28 32</td>
</tr>
<tr>
<td>8</td>
<td>Cylinder liners</td>
<td>0 0 0 0 0</td>
</tr>
<tr>
<td>9</td>
<td>Bearing Shells and Guide Disc</td>
<td>4 5 6 7 8 16 20 24 28 32</td>
</tr>
<tr>
<td>10</td>
<td>Packings and Gaskets</td>
<td>28 35 42 49 56 32 40 48 56 64</td>
</tr>
<tr>
<td>11</td>
<td>Pull-rods</td>
<td>4 5 6 7 8</td>
</tr>
<tr>
<td>12</td>
<td>Repair Kit for each type of valve</td>
<td>12 15 18 21 24 16 20 24 28 32</td>
</tr>
<tr>
<td>13</td>
<td>O-rings, Packings and Gaskets</td>
<td>28 35 42 49 56 32 40 48 56 64</td>
</tr>
<tr>
<td>14</td>
<td>Exhaust valve spindles / bottom pieces</td>
<td>4 5 6 7 8 16 20 24 28 32</td>
</tr>
<tr>
<td>15</td>
<td>Exhaust valve guide bushings</td>
<td>8 10 12 14 16 16 20 24 28 32</td>
</tr>
<tr>
<td>16</td>
<td>O-rings for exhaust valve</td>
<td>28 35 42 49 56 32 40 48 56 64</td>
</tr>
<tr>
<td>17</td>
<td>Fuel pump plungers</td>
<td>4 5 6 7 8</td>
</tr>
<tr>
<td>18</td>
<td>Suction/puncture valves, Sealing rings and Gaskets</td>
<td>12 15 18 21 24 16 20 24 28 32</td>
</tr>
<tr>
<td>19</td>
<td>Fuel valve guides and nozzles</td>
<td>20 25 30 35 40 20 25 30 35 40</td>
</tr>
<tr>
<td>20</td>
<td>Set bearings per TC (roller bearings)</td>
<td>3 3 3 3 3 4 4 4 4 4</td>
</tr>
<tr>
<td>21</td>
<td>Set bearings per TC (slide bearings)</td>
<td>1 1 1 1 1 2 2 2 2 2</td>
</tr>
</tbody>
</table>
Table B

<table>
<thead>
<tr>
<th>Group No.</th>
<th>Description</th>
<th>Service hours</th>
<th>0-54000</th>
<th>0-60000</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>O-rings and gaskets</td>
<td>4 5 6 7 8 4 5 6 7 8</td>
<td>36 45 54 63 72</td>
<td>40 50 60 70 80</td>
</tr>
<tr>
<td>2</td>
<td>Spring housing</td>
<td>4 5 6 7 8 4 5 6 7 8</td>
<td>36 45 54 63 72</td>
<td>40 50 60 70 80</td>
</tr>
<tr>
<td>3</td>
<td>O-ring W / Back-up ring</td>
<td>4 5 6 7 8 4 5 6 7 8</td>
<td>36 45 54 63 72</td>
<td>40 50 60 70 80</td>
</tr>
<tr>
<td>4</td>
<td>Hose with union</td>
<td>4 5 6 7 8 4 5 6 7 8</td>
<td>36 45 54 63 72</td>
<td>40 50 60 70 80</td>
</tr>
<tr>
<td>5</td>
<td>Set of piston rings</td>
<td>16 20 24 28 32 16 20 24 28 32</td>
<td>16 20 24 28 32</td>
<td>16 20 24 28 32</td>
</tr>
<tr>
<td>6</td>
<td>St. box, lamella / sealing rings</td>
<td>12 15 18 21 24 16 20 24 28 32</td>
<td>16 20 24 28 32</td>
<td>16 20 24 28 32</td>
</tr>
<tr>
<td>7</td>
<td>O-rings / Sealing rings Cyl. liner</td>
<td>4 5 6 7 8 4 5 6 7 8</td>
<td>36 45 54 63 72</td>
<td>40 50 60 70 80</td>
</tr>
<tr>
<td>8</td>
<td>Cylinder liners</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Bearing Shells and Guide Disc</td>
<td>4 5 6 7 8 4 5 6 7 8</td>
<td>36 45 54 63 72</td>
<td>40 50 60 70 80</td>
</tr>
<tr>
<td>10</td>
<td>Packings and Gaskets</td>
<td>28 35 42 49 56 32 40 48 56 64</td>
<td>28 35 42 49 56 32 40 48 56 64</td>
<td>28 35 42 49 56 32 40 48 56 64</td>
</tr>
<tr>
<td>11</td>
<td>Pull-rods</td>
<td>4 5 6 7 8 4 5 6 7 8</td>
<td>36 45 54 63 72</td>
<td>40 50 60 70 80</td>
</tr>
<tr>
<td>12</td>
<td>Repair Kit for each type of valve</td>
<td>12 15 18 21 24 16 20 24 28 32</td>
<td>16 20 24 28 32</td>
<td>16 20 24 28 32</td>
</tr>
<tr>
<td>13</td>
<td>O-rings, Packings and Gaskets</td>
<td>36 45 54 63 72 40 50 60 70 80</td>
<td>40 50 60 70 80</td>
<td>40 50 60 70 80</td>
</tr>
<tr>
<td>14</td>
<td>Exhaust valve spindles / bottom pieces</td>
<td>4 5 6 7 8 4 5 6 7 8</td>
<td>36 45 54 63 72</td>
<td>40 50 60 70 80</td>
</tr>
<tr>
<td>15</td>
<td>Exhaust valve guide bushings</td>
<td>8 10 12 14 16 16 20 24 28 32</td>
<td>16 20 24 28 32</td>
<td>16 20 24 28 32</td>
</tr>
<tr>
<td>16</td>
<td>O-rings for exhaust valve</td>
<td>36 45 54 63 72 40 50 60 70 80</td>
<td>40 50 60 70 80</td>
<td>40 50 60 70 80</td>
</tr>
<tr>
<td>17</td>
<td>Fuel pump plungers</td>
<td>4 5 6 7 8 4 5 6 7 8</td>
<td>36 45 54 63 72</td>
<td>40 50 60 70 80</td>
</tr>
<tr>
<td>18</td>
<td>Suction/puncture valves , Sealing rings and Gaskets</td>
<td>12 15 18 21 24 12 15 18 21 24</td>
<td>12 15 18 21 24</td>
<td>12 15 18 21 24</td>
</tr>
<tr>
<td>19</td>
<td>Fuel valve guides and nozzles</td>
<td>12 15 18 21 24 12 15 18 21 24</td>
<td>12 15 18 21 24</td>
<td>12 15 18 21 24</td>
</tr>
<tr>
<td>20</td>
<td>Set bearings per TC (roller bearings)</td>
<td>4 4 4 4 4 5 5 5 5 5</td>
<td>4 4 4 4 4 5 5 5 5 5</td>
<td>4 4 4 4 4 5 5 5 5 5</td>
</tr>
</tbody>
</table>

Table 19.08.01f: Wearing parts, option 4 87 629
Large spare parts, dimensions and masses

<table>
<thead>
<tr>
<th>Pos</th>
<th>Sec.</th>
<th>Description</th>
<th>Mass (kg)</th>
<th>A (mm)</th>
<th>B (mm)</th>
<th>C (mm)</th>
<th>D (mm)</th>
<th>E (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Cylinder liner, incl. cooling jacket</td>
<td>1,541</td>
<td>ø660</td>
<td>ø680</td>
<td>2,093</td>
<td>ø590</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Exhaust valve</td>
<td>449</td>
<td>1,310</td>
<td>655</td>
<td>494</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Piston complete, with piston rod</td>
<td>872</td>
<td>ø500</td>
<td>349</td>
<td>ø195</td>
<td>2,662</td>
<td>320</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Cylinder cover, incl. valves</td>
<td>1,163</td>
<td>ø903</td>
<td>413</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>Rotor for turbocharger, TCA 55-20/21</td>
<td>130</td>
<td>ø530</td>
<td>990</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>Rotor for turbocharger, TCA 66-20/21</td>
<td>220</td>
<td>ø630</td>
<td>1,170</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>Rotor for turbocharger, TCA 77-20/21</td>
<td>360</td>
<td>ø750</td>
<td>1,360</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>Rotor for turbocharger, TPL73-B12</td>
<td>115</td>
<td>ø507</td>
<td>963</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>Rotor for turbocharger, TPL77-B11</td>
<td>190</td>
<td>ø580</td>
<td>1,136</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>Rotor for turbocharger, TPL77-B12</td>
<td>190</td>
<td>ø602</td>
<td>1,136</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>Rotor for turbocharger, MET53MA</td>
<td>190</td>
<td>ø586</td>
<td>1,035</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>Rotor for turbocharger, MET60MA</td>
<td>240</td>
<td>ø652</td>
<td>1,188</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>Rotor for turbocharger, MET66MA</td>
<td>330</td>
<td>ø730</td>
<td>1,271</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 19.09.01: Large spare parts, dimensions and masses
List of Standard Tools for Maintenance

This section is available on request
Tool Panels

This section is available on request
Project Support and Documentation
Project Support and Documentation

The selection of the ideal propulsion plant for a specific newbuilding is a comprehensive task. However, as this selection is a key factor for the profitability of the ship, it is of the utmost importance for the end-user that the right choice is made.

MAN Diesel is able to provide a wide variety of support for the shipping and shipbuilding industries all over the world.

The knowledge accumulated over many decades by MAN Diesel covering such fields as the selection of the best propulsion machinery, optimisation of the engine installation, choice and suitability of a Power Take Off for a specific project, vibration aspects, environmental control etc., is available to shipowners, shipbuilders and ship designers alike.

Part of this information can be found in the following documentation:

- Installation drawings
- CEAS - Engine room dimensioning
- Project Guides
- Extent of Delivery (EOD)
- Technical papers

The publications are available at: www.mandiesel.com → ‘Marine’ → ‘Low Speed’

Engine Selection Guides

The ‘Engine Selection Guides’ are intended as a tool to provide assistance at the very initial stage of the project work. The guides give a general view of the MAN B&W two-stroke Programme for MC as well as for ME engines and include information on the following subjects:

- Engine data
- Engine layout and load diagrams
- Specific fuel oil consumption
- Turbocharger choice
- Electricity production, including power take off
- Installation aspects
- Auxiliary systems
- Vibration aspects.

After selecting the engine type on the basis of this general information, and after making sure that the engine fits into the ship's design, then a more detailed project can be carried out based on the ‘Project Guide’ for the specific engine type selected.

Project Guides

For each engine type of MC or ME design a ‘Project Guide’ has been prepared, describing the general technical features of that specific engine type, and also including some optional features and equipment.

The information is general, and some deviations may appear in a final engine documentation, depending on the content specified in the contract and on the individual licensee supplying the engine. The Project Guides comprise an extension of the general information in the Engine Selection Guide, as well as specific information on such subjects as:

- Engine Design
- Engine Layout and Load Diagrams, SFOC
- Turbocharger Choice & Exhaust Gas By-pass
- Electricity Production
- Installation Aspects
- List of Capacities: Pumps, Coolers & Exhaust Gas
- Fuel Oil
- Lubricating Oil
- Cylinder Lubrication
- Piston Rod Stuffing Box Drain Oil
- Central Cooling Water System
- Seawater Cooling
- Starting and Control Air
- Scavenge Air
- Exhaust Gas
- Engine Control System
- Vibration Aspects
- Monitoring Systems and Instrumentation
- Dispatch Pattern, Testing, Spares and Tools
- Project Support and Documentation
Computerised Engine Application System

Further customised information can be obtained from MAN Diesel as project support and, for this purpose, we have developed a 'Computerised Engine Application System', by means of which specific calculations can be made during the project stage, such as:

• Estimation of ship’s dimensions
• Propeller calculation and power prediction
• Selection of main engine
• Main engines comparison
• Layout/load diagrams of engine
• Maintenance and spare parts costs of the engine
• Total economy – comparison of engine rooms
• Steam and electrical power – ships’ requirement
• Auxiliary machinery capacities for derated engine
• Fuel and lube oil consumption – exhaust gas data
• Heat dissipation of engine
• Utilisation of exhaust gas heat
• Water condensation separation in air coolers
• Noise – engine room, exhaust gas, structure borne
• Preheating of diesel engine
• Utilisation of jacket cooling water heat, fresh water production
• Starting air system
• Exhaust gas back pressure
• Engine room data: pumps, coolers, tanks.

For further information, please refer to www.mandiesel.com under ‘Marine’ → ‘Low speed’ → ‘CEAS Engine Room Dimensions’.
Extent of Delivery

The 'Extent of Delivery' (EoD) sheets have been compiled in order to facilitate communication between owner, consultants, yard and engine maker during the project stage, regarding the scope of supply and the alternatives (options) available for MAN B&W two-stroke engines.

We provide four different EoDs:

- **EoD 98 - 50 MC Type Engine**
- **EoD 46 - 26 MC Type Engines**
- **EoD 108 - 50 ME Type Engines**
- **EoD 50 - 35 ME-B Type Engines**

These publications are available at: www.mandiesel.com under ‘Marine’ → ‘Low speed’ → ‘Project Guides and Extent of Delivery (EOD)’

Content of Extent of Delivery

The ‘Extent of Delivery’ includes a list of the basic items and the options of the main engine and auxiliary equipment and, it is divided into the systems and volumes stated below:

General information
- 4 00 xxx General information
- 4 02 xxx Rating
- 4 03 xxx Direction of rotation
- 4 06 xxx Rules and regulations
- 4 07 xxx Calculation of torsional and axial vibrations
- 4 09 xxx Documentation
- 4 11 xxx Voltage on board for electrical consumers
- 4 12 xxx Dismantling, packing and shipping of engine
- 4 14 xxx Testing of diesel engine
- 4 17 xxx Supervisors and advisory work
- 4 20 xxx Propeller
- 4 21 xxx Propeller hub
- 4 22 xxx Stern tube
- 4 23 xxx Propeller shaft
- 4 24 xxx Intermediate shaft
- 4 25 xxx Propeller shaftline
- 4 26 xxx Propeller, miscellaneous

Diesel engine
- 4 30 xxx Diesel engine
- 4 31 xxx Vibrations and balancing
- 4 35 xxx Fuel oil piping
- 4 40 xxx Lubricating oil and control oil piping
- 4 42 xxx Cylinder lubricating oil piping
- 4 43 xxx Piston rod stuffing box drain piping
- 4 45 xxx Low temperature cooling water piping
- 4 46 xxx Jacket cooling water piping
- 4 50 xxx Starting and control air piping
- 4 54 xxx Scavenge air cooler
- 4 55 xxx Scavenge air piping
- 4 59 xxx Turbocharger
- 4 60 xxx Exhaust gas piping
- 4 65 xxx Engine control system
- 4 70 xxx Local instrumentation
- 4 75 xxx Monitoring, safety, alarm and remote indication
- 4 78 xxx Electrical wiring on engine

Miscellaneous
- 4 80 xxx Miscellaneous
- 4 81 xxx Painting
- 4 82 xxx Engine seating
- 4 83 xxx Galleries
- 4 85 xxx Power Take Off
- 4 87 xxx Spare parts
- 4 88 xxx Tools

Remote control system
- 4 95 xxx Bridge control system

Description of the ‘Extent of Delivery’

The “Extent of Delivery” (EoD) is the basis for specifying the scope of supply for a specific order. The list consists of ‘Basic’ and ‘Optional’ items. The ‘Basic’ items define the simplest engine, designed for attended machinery space (AMS), without taking into consideration any specific requirements from the classification society, the yard or the owner.

The ‘Options’ are extra items that can be alternatives to the ‘Basic’ or additional items available to fulfill the requirements/functions for a specific project.
We base our first quotations on a ‘mostly required’ scope of supply, which is the so called ‘Copenhagen Standard EoD’, which are marked with an asterisk *.

This includes:

- Items for Unattended Machinery Space
- Minimum of alarm sensors recommended by the classification societies and MAN Diesel
- Moment compensator for certain numbers of cylinders
- MAN Diesel turbochargers
- The basic Engine Control System
- CoCoS-EDS online
- Spare parts either required or recommended by the classification societies and MAN Diesel
- Tools required or recommended by the classification societies and MAN Diesel.

The filled-in EoD is often used as an integral part of the final contract.
Installation Documentation

When a final contract is signed, a complete set of documentation, in the following called 'Installation Documentation', will be supplied to the buyer by the engine maker.

The 'Installation Documentation' is normally divided into the ‘A’ and ‘B’ volumes mentioned in the ‘Extent of Delivery’ under items:

4 09 602 Volume ‘A’:
Mainly comprises general guiding system drawings for the engine room.

4 09 603 Volume ‘B’:
Mainly comprises specific drawings for the main engine itself.

Most of the documentation in volume ‘A’ are similar to those contained in the respective Project Guides, but the Installation Documentation will only cover the order-relevant designs. These will be forwarded within 4 weeks from order.

The engine layout drawings in volume ‘B’ will, in each case, be customised according to the buyer’s requirements and the engine manufacturer’s production facilities. The documentation will be forwarded, as soon as it is ready, normally within 3–6 months from order.

As MAN Diesel and most of our licensees are using computerised drawings UniGraphics, Cadam and TIFF format, the documentation forwarded will normally be in size A4 or A3. The maximum size available is A1.

The drawings of volume ‘A’ are available on CD ROM.

The following list is intended to show an example of such a set of Installation Documentation, but the extent may vary from order to order.

Engine-relevant documentation

Main Section 901 Engine data
- External forces and moments
- Guide force moments
- Water and oil in engine
- Centre of gravity
- Basic symbols for piping
- Instrument symbols for piping
- Balancing

Main Section 915 Engine connections
- Scaled engine outline
- Engine outline
- List of flanges/counterflanges
- Engine pipe connections
- Gallery outline

Main Section 921 Engine instrumentation
- List of instruments
- Connections for electric components
- Guidance values for automation

Main Section 923 Engine Control System
- Engine Control System, description
- Engine Control System, diagrams
- Pneumatic system
- Speed correlation to telegraph
- List of components
- Sequence diagram

Main Section 924 Oil mist detector
- Oil mist detector

Main Section 925 Control equipment for auxiliary blower
- Electric wiring diagram
- Auxiliary blower
- Starter for electric motors

Main Section 932 Shaft line
- Crankshaft driving end
- Fitted bolts

Main Section 934 Turning gear
- Turning gear arrangement
- Turning gear, control system
- Turning gear, with motor

Main Section 936 Spare parts
- List of spare parts
Main Section 939 Engine paint
Specification of paint

Main Section 940 Gaskets, sealings, O-rings
Instructions
Packings
Gaskets, sealings, O-rings

Main Section 950 Engine pipe diagrams
Engine pipe diagrams
Bedplate drain pipes
Instrument symbols for piping
Basic symbols for piping
Lube oil, cooling oil and hydraulic oil piping
Cylinder lube oil pipes
Stuffing box drain pipes
Cooling water pipes, air cooler
Jacket water cooling pipes
Fuel oil drain pipes
Fuel oil pipes
Control air pipes
Starting air pipes
Turbocharger cleaning pipe
Scavenge air space, drain pipes
Scavenge air pipes
Air cooler cleaning pipes
Exhaust gas pipes
Steam extinguishing, in scav.box
Oil mist detector pipes
Pressure gauge pipes

Engine room-relevant documentation

Main Section 901 Engine data
List of capacities
Basic symbols for piping
Instrument symbols for piping

Main Section 902 Lube and cooling oil
Lube oil bottom tank
Lubricating oil filter
Crankcase venting
Lubricating and hydraulic oil system
Lube oil outlet

Main Section 904 Cylinder lubrication
Cylinder lube oil system

Main Section 905 Piston rod stuffing box
Stuffing box drain oil cleaning system

Main Section 906 Seawater cooling
Seawater cooling system

Main Section 907 Jacket water cooling
Jacket water cooling system
Deaerating tank
Deaerating tank, alarm device

Main Section 909 Central cooling system
Central cooling water system
Deaerating tank
Deaerating tank, alarm device

Main Section 910 Fuel oil system
Fuel oil heating chart
Fuel oil system
Fuel oil venting box
Fuel oil filter

Main Section 911 Compressed air
Starting air system

Main Section 912 Scavenge air
Scavenge air drain system

Main Section 913 Air cooler cleaning
Air cooler cleaning system

Main Section 914 Exhaust gas
Exhaust pipes, bracing
Exhaust pipe system, dimensions
Main Section 917 Engine room crane
Engine room crane capacity, overhauling space

Main Section 918 Torsiograph arrangement
Torsiograph arrangement

Main Section 919 Shaft earthing device
Earthing device

Main Section 920 Fire extinguishing in scavenge air space
Fire extinguishing in scavenge air space

Main Section 921 Instrumentation
Axial vibration monitor

Main Section 922 Engine seating
Profile of engine seating
Epoxy chocks
Alignment screws

Main Section 923 Holding-down bolts
Holding-down bolt
Round nut
Distance pipe
Spherical washer
Spherical nut
Assembly of holding-down bolt
Protecting cap
Arrangement of holding-down bolts

Main Section 924 Supporting chocks
Supporting chocks
Securing of supporting chocks

Main Section 925 Side chocks
Side chocks
Liner for side chocks, starboard
Liner for side chocks, port side

Main Section 926 End chocks
Stud for end chock bolt
End chock
Round nut
Spherical washer, concave
Spherical washer, convex
Assembly of end chock bolt
Liner for end chock
Protecting cap

Main Section 930 Top bracing of engine
Top bracing outline
Top bracing arrangement
Friction-materials
Top bracing instructions
Top bracing forces
Top bracing tension data

Main Section 931 Shaft line
Static thrust shaft load
Fitted bolt

Main Section 932 Power Take-Off
List of capacities
PTO/RCF arrangement, if fitted

Main Section 933 Spare parts dimensions
Connecting rod studs
Cooling jacket
Crankpin bearing shell
Crosshead bearing
Cylinder cover stud
Cylinder cover
Cylinder liner
Exhaust valve
Exhaust valve bottom piece
Exhaust valve spindle
Exhaust valve studs
Fuel valve
Main bearing shell
Main bearing studs
Piston complete
Starting valve
Telescope pipe
Thrust block segment
Turbocharger rotor

Main Section 934 Gaskets, sealings, O-rings
Gaskets, sealings, O-rings

Main Section 935 Material sheets
MAN B&W Standard Sheets Nos:

- S19R
- S45R
- S25Cr1
- S34Cr1R
- C4
Engine production and installation-relevant documentation

Main Section 935 Main engine production records, engine installation drawings
Installation of engine on board
Dispatch pattern 1, or
Dispatch pattern 2
Check of alignment and bearing clearances
Optical instrument or laser
Reference sag line for piano wire
Alignment of bedplate
Piano wire measurement of bedplate
Check of twist of bedplate
Crankshaft alignment reading
Bearing clearances
Check of reciprocating parts
Production schedule
Inspection after shop trials
Dispatch pattern, outline
Preservation instructions

Main Section 941 Shop trials
Shop trials, delivery test
Shop trial report

Main Section 942 Quay trial and sea trial
Stuffing box drain cleaning
Fuel oil preheating chart
Flushing of lube oil system
Freshwater system treatment
Freshwater system preheating
Quay trial and sea trial
Adjustment of control air system
Adjustment of fuel pump
Heavy fuel operation
Guidance values – automation

Main Section 945 Flushing procedures
Lubricating oil system cleaning instruction

Tools

Main Section 926 Engine seating
Hydraulic jack for holding down bolts
Hydraulic jack for end chock bolts

Main Section 937 Engine tools
List of tools
Outline dimensions, main tools

Main Section 938 Tool panel
Tool panels

Auxiliary equipment
980 Fuel oil supply unit, if ordered
990 Exhaust silencer, if ordered
995 Other auxiliary equipment
Appendix A
Symbols for Piping

<table>
<thead>
<tr>
<th>No.</th>
<th>Symbol</th>
<th>Symbol designation</th>
<th>No.</th>
<th>Symbol</th>
<th>Symbol designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>General conventional symbols</td>
<td>2.14</td>
<td></td>
<td>Spectacle flange</td>
</tr>
<tr>
<td>1.1</td>
<td></td>
<td>Pipe</td>
<td>2.15</td>
<td></td>
<td>Bulkhead fitting water tight, flange</td>
</tr>
<tr>
<td>1.2</td>
<td></td>
<td>Pipe with indication of direction of flow</td>
<td>2.16</td>
<td></td>
<td>Bulkhead crossing, non-watertight</td>
</tr>
<tr>
<td>1.3</td>
<td></td>
<td>Valves, gate valves, cocks and flaps</td>
<td>2.17</td>
<td></td>
<td>Pipe going upwards</td>
</tr>
<tr>
<td>1.4</td>
<td></td>
<td>Appliances</td>
<td>2.18</td>
<td></td>
<td>Pipe going downwards</td>
</tr>
<tr>
<td>1.5</td>
<td></td>
<td>Indicating and measuring instruments</td>
<td>2.19</td>
<td></td>
<td>Orifice</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Pipes and pipe joints</td>
<td>3</td>
<td></td>
<td>Valves, gate valves, cocks and flaps</td>
</tr>
<tr>
<td>2.1</td>
<td></td>
<td>Crossing pipes, not connected</td>
<td>3.1</td>
<td></td>
<td>Valve, straight through</td>
</tr>
<tr>
<td>2.2</td>
<td></td>
<td>Crossing pipes, connected</td>
<td>3.2</td>
<td></td>
<td>Valves, angle</td>
</tr>
<tr>
<td>2.3</td>
<td></td>
<td>Tee pipe</td>
<td>3.3</td>
<td></td>
<td>Valves, three way</td>
</tr>
<tr>
<td>2.4</td>
<td></td>
<td>Flexible pipe</td>
<td>3.4</td>
<td></td>
<td>Non-return valve (flap), straight</td>
</tr>
<tr>
<td>2.5</td>
<td></td>
<td>Expansion pipe (corrugated) general</td>
<td>3.5</td>
<td></td>
<td>Non-return valve (flap), angle</td>
</tr>
<tr>
<td>2.6</td>
<td></td>
<td>Joint, screwed</td>
<td>3.6</td>
<td></td>
<td>Non-return valve (flap), straight, screw down</td>
</tr>
<tr>
<td>2.7</td>
<td></td>
<td>Joint, flanged</td>
<td>3.7</td>
<td></td>
<td>Non-return valve (flap), angle, screw down</td>
</tr>
<tr>
<td>2.8</td>
<td></td>
<td>Joint, sleeve</td>
<td>3.8</td>
<td></td>
<td>Flap, straight through</td>
</tr>
<tr>
<td>2.9</td>
<td></td>
<td>Joint, quick-releasing</td>
<td>3.9</td>
<td></td>
<td>Flap, angle</td>
</tr>
<tr>
<td>2.10</td>
<td></td>
<td>Expansion joint with gland</td>
<td>3.10</td>
<td></td>
<td>Reduction valve</td>
</tr>
<tr>
<td>2.11</td>
<td></td>
<td>Expansion pipe</td>
<td>3.11</td>
<td></td>
<td>Safety valve</td>
</tr>
<tr>
<td>2.12</td>
<td></td>
<td>Cap nut</td>
<td>3.12</td>
<td></td>
<td>Angle safety valve</td>
</tr>
<tr>
<td>2.13</td>
<td></td>
<td>Blank flange</td>
<td>3.13</td>
<td></td>
<td>Self-closing valve</td>
</tr>
<tr>
<td>No.</td>
<td>Symbol</td>
<td>Symbol designation</td>
<td>No.</td>
<td>Symbol</td>
<td>Symbol designation</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>--</td>
<td>-----</td>
<td>--------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>3.14</td>
<td></td>
<td>Quick-opening valve</td>
<td>4</td>
<td></td>
<td>Control and regulation parts</td>
</tr>
<tr>
<td>3.15</td>
<td></td>
<td>Quick-closing valve</td>
<td>4.1</td>
<td></td>
<td>Hand-operated</td>
</tr>
<tr>
<td>3.16</td>
<td></td>
<td>Regulating valve</td>
<td>4.2</td>
<td></td>
<td>Remote control</td>
</tr>
<tr>
<td>3.17</td>
<td></td>
<td>Kingston valve</td>
<td>4.3</td>
<td></td>
<td>Spring</td>
</tr>
<tr>
<td>3.18</td>
<td></td>
<td>Ballvalve (cock)</td>
<td>4.4</td>
<td></td>
<td>Mass</td>
</tr>
<tr>
<td>3.19</td>
<td></td>
<td>Butterfly valve</td>
<td>4.5</td>
<td></td>
<td>Float</td>
</tr>
<tr>
<td>3.20</td>
<td></td>
<td>Gate valve</td>
<td>4.6</td>
<td></td>
<td>Piston</td>
</tr>
<tr>
<td>3.21</td>
<td></td>
<td>Double-seated changeover valve</td>
<td>4.7</td>
<td></td>
<td>Membrane</td>
</tr>
<tr>
<td>3.22</td>
<td></td>
<td>Suction valve chest</td>
<td>4.8</td>
<td></td>
<td>Electric motor</td>
</tr>
<tr>
<td>3.23</td>
<td></td>
<td>Suction valve chest with non-return valves</td>
<td>4.9</td>
<td></td>
<td>Electro-magnetic</td>
</tr>
<tr>
<td>3.24</td>
<td></td>
<td>Double-seated changeover valve, straight</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.25</td>
<td></td>
<td>Double-seated changeover valve, angle</td>
<td>5.1</td>
<td></td>
<td>Mudbox</td>
</tr>
<tr>
<td>3.26</td>
<td></td>
<td>Cock, straight through</td>
<td>5.2</td>
<td></td>
<td>Filter or strainer</td>
</tr>
<tr>
<td>3.27</td>
<td></td>
<td>Cock, angle</td>
<td>5.3</td>
<td></td>
<td>Magnetic filter</td>
</tr>
<tr>
<td>3.28</td>
<td></td>
<td>Cock, three-way, L-port in plug</td>
<td>5.4</td>
<td></td>
<td>Separator</td>
</tr>
<tr>
<td>3.29</td>
<td></td>
<td>Cock, three-way, T-port in plug</td>
<td>5.5</td>
<td></td>
<td>Steam trap</td>
</tr>
<tr>
<td>3.30</td>
<td></td>
<td>Cock, four-way, straight through in plug</td>
<td>5.6</td>
<td></td>
<td>Centrifugal pump</td>
</tr>
<tr>
<td>3.31</td>
<td></td>
<td>Cock with bottom connection</td>
<td>5.7</td>
<td></td>
<td>Gear or screw pump</td>
</tr>
<tr>
<td>3.32</td>
<td></td>
<td>Cock, straight through, with bottom conn.</td>
<td>5.8</td>
<td></td>
<td>Hand pump (bucket)</td>
</tr>
<tr>
<td>3.33</td>
<td></td>
<td>Cock, angle, with bottom connection</td>
<td>5.9</td>
<td></td>
<td>Ejector</td>
</tr>
<tr>
<td>3.34</td>
<td></td>
<td>Cock, three-way, with bottom connection</td>
<td>5.10</td>
<td></td>
<td>Various accessories (text to be added)</td>
</tr>
</tbody>
</table>
The symbols used are in accordance with ISO/R 538-1967, except symbol No. 2.19

Fig. A.01.01: Symbols for piping